高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向众包的基于信誉值的激励机制

芮兰兰 张攀 黄豪球 邱雪松

芮兰兰, 张攀, 黄豪球, 邱雪松. 一种面向众包的基于信誉值的激励机制[J]. 电子与信息学报, 2016, 38(7): 1808-1815. doi: 10.11999/JEIT151095
引用本文: 芮兰兰, 张攀, 黄豪球, 邱雪松. 一种面向众包的基于信誉值的激励机制[J]. 电子与信息学报, 2016, 38(7): 1808-1815. doi: 10.11999/JEIT151095
RUI Lanlan, ZHANG Pan, HUANG Haoqiu, QIU Xuesong. Reputation-based Incentive Mechanisms in Crowdsourcing[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1808-1815. doi: 10.11999/JEIT151095
Citation: RUI Lanlan, ZHANG Pan, HUANG Haoqiu, QIU Xuesong. Reputation-based Incentive Mechanisms in Crowdsourcing[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1808-1815. doi: 10.11999/JEIT151095

一种面向众包的基于信誉值的激励机制

doi: 10.11999/JEIT151095
基金项目: 

国家自然科学基金(61302078, 61372108),国家自然科学基金创新研究群体科学基金(61121061),北京高等学校青年英才计划项目(YETP0476)

Reputation-based Incentive Mechanisms in Crowdsourcing

Funds: 

The National Natural Science Foundation of China (61302078, 61372108), The Funds for Creative Research Groups of China (61121061), Beijing Higher Education Young Elite Teacher Project (YETP0476)

  • 摘要: 众包是互联网带来的一种分布式问题解决模式。然而,由于工作者和任务发布者具有自私特性并且致力于获得自身效益的最大化,使得在众包应用中,存在内部的激励问题。该文主要完成以下工作:首先,基于重复博弈,提出一种基于信誉值的激励模型,用于激励理性工作者高质量地完成任务;其次,该激励模型中同时设置了惩罚机制,将针对恶意工作者做出相应惩罚。仿真结果表明,即使在自私工作者比例为0.2的条件下,只要合理选择惩罚参数,均可有效激励理性工作者的尽力工作,众包平台的整体性能可以提升至90%以上。
  • 张志强, 逄居升, 谢晓芹, 等. 众包质量控制策略及评估算法研究[J]. 计算机学报, 2013, 36(8): 1636-1649. doi: 10.3724/ SP.J.1016.2013.01636.
    ZHANG Z Q, PANG J S, XIE X Q, et al. Research on crowdsourcing quality control strategies and evaluation algorithm[J]. Chinese Journal of Computers, 2013, 36(8): 1636-1649. doi: 10.3724/SP.J.1016.2013.01636.
    HOSSEINI M, PHALPK, TAYLOR J, et al. The four pillars of crowdsourcing: A reference model[C]. 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS), Marrakech, 2014: 1-12. doi: 10. 1109/RCIS.2014.6861072.
    SHEN H, LI Z, LIU J, et al.. Knowledge sharing in the online social network of Yahoo! answers and its implications [J]. IEEE Transactions on Computers, 2014, 64(6): 1715-1728. doi: 10.1109/TC.2014.2322598.
    WU H, CORNEY J, and GRANT M. Relationship between quality and payment in crowdsourced design[C]. Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Hsinchu, 2014: 499-504. doi: 10.1109/CSCWD.2014.6846895.
    DOAN A, RAMAKRISHNAN R, and HALEVY A, Crowdsourcing systems on the World-Wide Web[J]. Communications of the ACM, 2011, 54(4): 86-96. doi: 10. 1145/1924421.1924442.
    MALANDRINO F, CASETTI C, and CHIASSERINI C. Content discovery and caching in mobile networks with infrastructure[J]. IEEE Transactions on Computers, 2012, 61(10): 1507-1520. doi: 10.1109/TC.2011.216.
    谢晓兰, 刘亮, 赵鹏. 面向云计算基于双层激励和欺骗检测的信任模型[J]. 电子与信息学报, 2012, 34(4): 812-817. doi: 10.3724/SP.J.1146.2011.00787.
    XIE X L, LIU L, and ZHAO P. Trust model based on double incentive and deception detection for cloud computing [J]. Journal of Electronics Information Technology, 2012, 34(4): 812-817. doi: 10.3724/SP.J.1146.2011.00787.
    杨明, 刘元安, 马晓雷, 等. 一种基于定价与信任的网络资源分配算法[J]. 电子与信息学报, 2010, 32(4): 846-851. doi: 10.3724/SP.J.1146.2009.00435.
    YANG M, LIU Y A, MA X L, et al. A grid resource allocation algorithm based on pricing and trust[J]. Journal of Electronics Information Technology, 2010, 32(4): 846-851. doi: 10.3724/SP.J.1146.2009.00435.
    YANG D, XUE G, FANG X, et al. Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing[C]. Proceedings of the 18th Annual International Conference on Mobile Computing and Networking (MOBICOM 2012), New York, 2012: 173-184.
    ZHANG Y and SCHAAR M. Reputation-based incentive protocols in crowdsourcing applications[C]. IEEE INFOCOM, Orlando, FL, 2012: 2140-2148. doi: 10.1109/INFCOM.2012. 6195597.
    WEN Y, SHI J, ZHANG Q, et al. Quality-driven auction- based incentive mechanism for mobile crowd sensing[J]. IEEE Transactions on Vehicular Technology, 2014, 64(9): 4203-4214. doi: 10.1109/TVT.2014.2363842.
    TSUDA T, KOMAI Y, SSASKI Y, et al. Top-k query processing and malicious node identification against data replacement attack in MANETs[C]. IEEE 15th International Conference on Mobile Data Management (MDM), Brisbane, 2014: 279-288. doi: 10.1109/MDM.2014.40.
    XU Q, XIONG J, HUANG Q, et al. Online HodgeRank on random graphs for crowdsourceable QoE evaluation[J]. IEEE Transactions on Multimedia, 2014, 16(2): 373-386. doi: 10.1109/TMM.2013.2292568.
    ANEGEKUH L, SUN L, and IFEACHOR E. A screening methodology for crowdsourcing video QoE evaluation[C]. IEEE Global Communications Conference (GLOBECOM), Austin, TX, 2014. doi: 10.1109/GLOCOM.2014.7036964.
    DANG D, LIU K, ZHANG Y, et al. A crowdsourcing worker quality evaluation algorithm on MapReduce for big data applications[J]. IEEE Transactions on Parallel and Distributed Systems, 2015. doi: 10.1109/TPDS.2015. 2457924.
    桂春梅. 虚拟计算环境下信誉机制关键技术研究[D]. [博士论文], 国防科技大学, 2009.
    DIXIT A, REILEY D, and SKEATH S. Games of Strategy [M]. New York, US, W. W. Norton Company, Inc., 2009: 345-354.
  • 加载中
计量
  • 文章访问数:  2138
  • HTML全文浏览量:  286
  • PDF下载量:  700
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-25
  • 修回日期:  2016-04-22
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回