WESTOVER M B, SHAFI M, BIANCHI M T, et al. The probability of seizures during EEG monitoring in critically ill adults[J]. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 2015, 126(3): 463-471. doi: 10.1016/J.clinph.2014.05.037.
|
KIM Y and LEE S K. Energy-efficient wireless hospital sensor networking for remote patient monitoring[J]. Information Sciences, 2014, 282: 332-349. doi: 10.1016/ j.ins.2014.05.056.
|
DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
|
FAUVEL S and WARD R K. An energy efficient compressed sensing framework for the compression of Electroencephalogram signals[J]. Sensors, 2014, 14(1): 1474-1496. doi: 10.3390/s140101474.
|
LIU B, ZHANG Z, XU G, et al. Energy efficient telemonitoring of physiological signals via compressed sensing: a fast algorithm and power consumption evaluation[J]. IEEE Transactions on Biomedical Signal Processing and Control, 2013, 11(1): 80-88. doi: 10.1016/j.bspc.2014.02.010.
|
CLIFTON L, CLIFTON D A, PIMENTEL M A, et al. Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensor[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(3): 722-730. doi: 10.1109/JBHI.2013.2293059.
|
ZHANG Z, JUNG T P, MAKEIG S, et al. Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(1): 221-224. doi: 10.1109/TBME.2012.2217959.
|
DAI Y, WANG X, LI X, et al. Sparse EEG compressive sensing for web-enabled person identification[J]. Measurement, 2015, 74: 11-20. doi: 10.1016/j.measurement. 2015.07.008.
|
BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001. doi: 10.1109/ TIT.2010.2040894.
|
TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108.
|
DAI W and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. doi: 10.1109/TIT.2009.2016006.
|
MOHIMANI H, BABAIE-ZADEH M, and JUTTEN C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing. 2009, 57(1): 289-301. doi: 10.1109/TSP.2008. 2007606.
|
ZHANG Z, JUNG T P, MAKEIG S, et al. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(2): 300-309. doi: 10.1109/TBME.2012.2226175.
|
孙洪, 张智林, 余磊. 从稀疏到结构化稀疏: 贝叶斯方法[J]. 信号处理, 2012, 28(6): 759-773. doi: 10.16798/j.issn.1003- 0530.2016.02.005.
|
SUN Hong, ZHANG Zhilin, and YU Lei. From sparsity to structured sparsity: Bayesian perspective[J]. Signal Processing, 2012, 28(6): 759-773. doi: 10.16798/j.issn.1003- 0530.2016.02.005.
|
ZHANG Z and RAO B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009-2015. doi: 10.1109/TSP.2013.2241055.
|
COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488. doi: 10.1109/TSP.2005.849172.
|
ELDAR Y C and RAUHUT H. Average case analysis of multichannel sparse recovery using convex relaxation[J]. IEEE Transactions on Information Theory, 2010, 56(1): 505-519. doi: 10.1109/TIT.2009.2034789.
|
ZHANG Z and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773.
|
ZHANG Z, JUNG T P, and MAKEIG S. Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(6): 1186-1197. doi: 10.1109/TNSRE. 2014.2319334.
|
彭向东, 张华, 刘继忠. 基于过完备字典的体域网压缩感知心电重构[J]. 自动化学报, 2014, 40(7): 1421-1432. doi: 10.3724/ SP.J.1004.2014.01421.
|
PENG Xiangdong, ZHANG Hua, and LIU Jizhong. ECG reconstruction of body sensor network using compressed sensing based on overcomplete dictionary[J]. Acta Automatica Sinica, 2014, 40(7): 1421-1432. doi: 10.3724/SP.J. 1004.2014.01421.
|
孙林慧, 杨震, 季云云, 等. 基于过完备线性预测字典的压缩感知语音重构[J]. 仪器仪表学报, 2012, 33(4): 743-749. doi: 10.3969/j.issn.0254-3087.2012.04.004.
|
SUN Linhui, YANG Zhen, JI Yunyun, et al. Reconstruction of compressed speech sensing based on overcomplete linear prediction dictionary[J]. Chinese Journal of Scientific Instrument, 2012, 33(4): 743-749. doi: 10.3969/j.issn.0254- 3087.2012.04.004.
|
DONEVA M, BORNERT P, EGGERS H, et al. Compressed sensing reconstruction for magnetic resonance parameter mapping[J]. Magnetic Resonance in Medicine, 2010, 64(4): 1114-1120. doi: 10.1002/mrm.22483.
|
AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. doi: 10.1109/TSP.2006.881199.
|
SCHALLK G, MCFARLAND D J, HINTERBERGER T, et al. BCI2000: a general-purpose Brain-Computer Interface (BCI) system[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1034-1043. doi: 10.1109/TBME. 2004.827072.
|