高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于过完备字典稀疏表示的多通道脑电信号压缩感知联合重构

吴建宁 徐海东 王珏

吴建宁, 徐海东, 王珏. 基于过完备字典稀疏表示的多通道脑电信号压缩感知联合重构[J]. 电子与信息学报, 2016, 38(7): 1666-1673. doi: 10.11999/JEIT151079
引用本文: 吴建宁, 徐海东, 王珏. 基于过完备字典稀疏表示的多通道脑电信号压缩感知联合重构[J]. 电子与信息学报, 2016, 38(7): 1666-1673. doi: 10.11999/JEIT151079
WU Jianning, XU Haidong, WANG Jue. A New Joint Reconstruction Algorithm of Compressed Sensing for Multichannel EEG Signals Based on Over-complete Dictionary Approach[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1666-1673. doi: 10.11999/JEIT151079
Citation: WU Jianning, XU Haidong, WANG Jue. A New Joint Reconstruction Algorithm of Compressed Sensing for Multichannel EEG Signals Based on Over-complete Dictionary Approach[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1666-1673. doi: 10.11999/JEIT151079

基于过完备字典稀疏表示的多通道脑电信号压缩感知联合重构

doi: 10.11999/JEIT151079
基金项目: 

国家科技支撑项目(2012BAI33B01),福建省自然科学基金项目(2013J01220),福建省高等学校教学改革研究项目(JAS14674),福建师范大学创新创业教育改革研究项目(D201503005)

A New Joint Reconstruction Algorithm of Compressed Sensing for Multichannel EEG Signals Based on Over-complete Dictionary Approach

Funds: 

The National Science and Technology Supporting Project (2012BAI33B01), The Natural Science Foundation of Fujian Province (2013J01220), The Teaching Reform Project of University of Fujian Province (JAS14674), The Project of Education of Entrepreneurship and Innovation of Fujian Normal University (D201503005)

  • 摘要: 该文基于多通道脑电信号时空特性构建非正交变换过完备字典,准确稀疏表示蕴含时空相关性信息的多通道脑电信号,提高基于时空稀疏贝叶斯学习模型的多通道脑电信号压缩感知联合重构算法性能。实验选用eegmmidb脑电数据库的多通道脑电信号验证所提算法有效性。结果表明,基于过完备字典稀疏表示的多通道脑电信号,能够为多通道脑电信号压缩感知重构算法提供更多的时空相关性信息,比传统多通道脑电信号压缩感知重构算法所得的信噪比值提高近12 dB,重构时间减少0.75 s,显著提高多通道脑电信号联合重构性能。
  • WESTOVER M B, SHAFI M, BIANCHI M T, et al. The probability of seizures during EEG monitoring in critically ill adults[J]. Clinical Neurophysiology Official Journal of the International Federation of Clinical Neurophysiology, 2015, 126(3): 463-471. doi: 10.1016/J.clinph.2014.05.037.
    KIM Y and LEE S K. Energy-efficient wireless hospital sensor networking for remote patient monitoring[J]. Information Sciences, 2014, 282: 332-349. doi: 10.1016/ j.ins.2014.05.056.
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/ TIT.2006.871582.
    FAUVEL S and WARD R K. An energy efficient compressed sensing framework for the compression of Electroencephalogram signals[J]. Sensors, 2014, 14(1): 1474-1496. doi: 10.3390/s140101474.
    LIU B, ZHANG Z, XU G, et al. Energy efficient telemonitoring of physiological signals via compressed sensing: a fast algorithm and power consumption evaluation[J]. IEEE Transactions on Biomedical Signal Processing and Control, 2013, 11(1): 80-88. doi: 10.1016/j.bspc.2014.02.010.
    CLIFTON L, CLIFTON D A, PIMENTEL M A, et al. Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensor[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(3): 722-730. doi: 10.1109/JBHI.2013.2293059.
    ZHANG Z, JUNG T P, MAKEIG S, et al. Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(1): 221-224. doi: 10.1109/TBME.2012.2217959.
    DAI Y, WANG X, LI X, et al. Sparse EEG compressive sensing for web-enabled person identification[J]. Measurement, 2015, 74: 11-20. doi: 10.1016/j.measurement. 2015.07.008.
    BARANIUK R G, CEVHER V, DUARTE M F, et al. Model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001. doi: 10.1109/ TIT.2010.2040894.
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108.
    DAI W and MILENKOVIC O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249. doi: 10.1109/TIT.2009.2016006.
    MOHIMANI H, BABAIE-ZADEH M, and JUTTEN C. A fast approach for overcomplete sparse decomposition based on smoothed l0 norm[J]. IEEE Transactions on Signal Processing. 2009, 57(1): 289-301. doi: 10.1109/TSP.2008. 2007606.
    ZHANG Z, JUNG T P, MAKEIG S, et al. Compressed sensing for energy-efficient wireless telemonitoring of noninvasive fetal ECG via block sparse Bayesian learning[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(2): 300-309. doi: 10.1109/TBME.2012.2226175.
    孙洪, 张智林, 余磊. 从稀疏到结构化稀疏: 贝叶斯方法[J]. 信号处理, 2012, 28(6): 759-773. doi: 10.16798/j.issn.1003- 0530.2016.02.005.
    SUN Hong, ZHANG Zhilin, and YU Lei. From sparsity to structured sparsity: Bayesian perspective[J]. Signal Processing, 2012, 28(6): 759-773. doi: 10.16798/j.issn.1003- 0530.2016.02.005.
    ZHANG Z and RAO B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009-2015. doi: 10.1109/TSP.2013.2241055.
    COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488. doi: 10.1109/TSP.2005.849172.
    ELDAR Y C and RAUHUT H. Average case analysis of multichannel sparse recovery using convex relaxation[J]. IEEE Transactions on Information Theory, 2010, 56(1): 505-519. doi: 10.1109/TIT.2009.2034789.
    ZHANG Z and RAO B D. Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 912-926. doi: 10.1109/JSTSP.2011. 2159773.
    ZHANG Z, JUNG T P, and MAKEIG S. Spatiotemporal sparse Bayesian learning with applications to compressed sensing of multichannel physiological signals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(6): 1186-1197. doi: 10.1109/TNSRE. 2014.2319334.
    彭向东, 张华, 刘继忠. 基于过完备字典的体域网压缩感知心电重构[J]. 自动化学报, 2014, 40(7): 1421-1432. doi: 10.3724/ SP.J.1004.2014.01421.
    PENG Xiangdong, ZHANG Hua, and LIU Jizhong. ECG reconstruction of body sensor network using compressed sensing based on overcomplete dictionary[J]. Acta Automatica Sinica, 2014, 40(7): 1421-1432. doi: 10.3724/SP.J. 1004.2014.01421.
    孙林慧, 杨震, 季云云, 等. 基于过完备线性预测字典的压缩感知语音重构[J]. 仪器仪表学报, 2012, 33(4): 743-749. doi: 10.3969/j.issn.0254-3087.2012.04.004.
    SUN Linhui, YANG Zhen, JI Yunyun, et al. Reconstruction of compressed speech sensing based on overcomplete linear prediction dictionary[J]. Chinese Journal of Scientific Instrument, 2012, 33(4): 743-749. doi: 10.3969/j.issn.0254- 3087.2012.04.004.
    DONEVA M, BORNERT P, EGGERS H, et al. Compressed sensing reconstruction for magnetic resonance parameter mapping[J]. Magnetic Resonance in Medicine, 2010, 64(4): 1114-1120. doi: 10.1002/mrm.22483.
    AHARON M, ELAD M, and BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. doi: 10.1109/TSP.2006.881199.
    SCHALLK G, MCFARLAND D J, HINTERBERGER T, et al. BCI2000: a general-purpose Brain-Computer Interface (BCI) system[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1034-1043. doi: 10.1109/TBME. 2004.827072.
  • 加载中
计量
  • 文章访问数:  1564
  • HTML全文浏览量:  212
  • PDF下载量:  562
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-21
  • 修回日期:  2016-04-29
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回