高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LANDMARC与压缩感知的双段式室内定位算法

李丽娜 马俊 龙跃 徐攀峰

李丽娜, 马俊, 龙跃, 徐攀峰. 基于LANDMARC与压缩感知的双段式室内定位算法[J]. 电子与信息学报, 2016, 38(7): 1631-1637. doi: 10.11999/JEIT151050
引用本文: 李丽娜, 马俊, 龙跃, 徐攀峰. 基于LANDMARC与压缩感知的双段式室内定位算法[J]. 电子与信息学报, 2016, 38(7): 1631-1637. doi: 10.11999/JEIT151050
LI Lina, MA Jun, LONG Yue, XU Panfeng. Double Stage Indoor Localization Algorithm Based on LANDMARC and Compressive Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1631-1637. doi: 10.11999/JEIT151050
Citation: LI Lina, MA Jun, LONG Yue, XU Panfeng. Double Stage Indoor Localization Algorithm Based on LANDMARC and Compressive Sensing[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1631-1637. doi: 10.11999/JEIT151050

基于LANDMARC与压缩感知的双段式室内定位算法

doi: 10.11999/JEIT151050
基金项目: 

国家自然科学基金(61403176),辽宁省教育厅科学技术研究项目(L2013003)

Double Stage Indoor Localization Algorithm Based on LANDMARC and Compressive Sensing

Funds: 

The National Natural Science Foundation of China (61403176), Science and Technology Research Project of Educational Commission of Liaoning Province of China (L2013003)

  • 摘要: 鉴于已有室内定位算法定位精度与运算效率之间的矛盾,该文提出一种将LANDMARC区域定位与基于模拟退火优化正则化正交匹配追踪(SROMP)的压缩感知位置估计相结合的双段式定位算法(LANDMARC- SROMP CS)。首先,利用LANDMARC定位算法快速锁定目标所在区域范围;在锁定的区域内,再引入压缩感知理论实现目标位置估计。此部分,首先根据锁定区域范围建立虚拟参考标签;然后由新型组合核函数相关向量机算法训练得到室内传播损耗模型,计算获得虚拟标签处接收信号强度值,构建测量矩阵;最后利用SROMP压缩感知重构算法求解出目标的位置索引矩阵,对索引矩阵中的位置相关点加权平均得到目标的位置信息。实验结果表明,所提定位算法平均定位误差为0.6445 m,算法运算效率相对较高,可以较好地满足室内定位的要求。
  • YANG Ting and ZHU Liping. A review of modern indoor localization systems[C]. Proceedings of the 2nd National Conference on Information Technology and Computer Science, Shanghai, 2015: 10-11.
    WU Ling, and HUANG Liya. Improvement of location methods based on RFID[J]. The Journal of China Universities of Posts and Telecommunications, 2013, 20(6): 36-41.
    LI Chengtie, WANG Jinkuan, and HAN Yinghua. An efficient compressed sensing-based cross-layer congestion control scheme for wireless sensor networks[C]. Proceedings of IEEE 26th Chinese Control and Decision conference, Shanghai, 2014: 5-6.
    何风行, 余志军, 刘海涛. 基于压缩感知的无线传感器网络多目标定位算法[J]. 电子与信息学报, 2012, 34(3): 716-721. doi: 10.3724/SP.J.1146.2011.00405.
    HE Fenghang, YU Zhijun, and LIU Haitao. Multiple target localization via compressed sensing in wireless sensor networks[J]. Journal of Electronics Information Technology, 2012, 34(3): 716-721. doi: 10.3724/SP.J.1146.2011.00405.
    MIR Y U, KOPPARAPU V R, and YAND Dongkai. An enhanced K-nearest neighbor algorithm for indoor positioning systems in a WLAN[C]. Proceedings of 2014 IEEE Computers, Communications and IT Applications Conference (ComComAp), Beijing, 2014: 5-8.
    ZHANG Rongbiao, GUO Jianguang, CHU Fuhuan, et al. Environmental-adaptive indoor radio path loss model for wireless sensor networks localization[J]. AEU - International Journal of Electronics and Communications, 2011, 65(12): 1023-1031.
    MIHALIS A N, HATICE G, and MAJA P. Output- associative RVM regression for dimensional and continuous emotion prediction[J]. Image and Vision Computing, 2012, 30(3): 186-196.
    赵春晖, 张燚, 王玉磊. 基于小波核主成分分析的相关向量机高光谱图像分类[J]. 电子与信息学报, 2012, 34(8): 29-32. doi: 10.3724/SP.J.1146.2011.01282.
    ZHAO Chunhui , ZHANG Yi, and WANG Yulei. Relevant vector machine classification of hyperspectral image based on wavelet kernel principal component analysis[J]. Journal of Electronics Information Technology, 2012, 34(8): 29-32. doi: 10.3724/SP.J.1146.2011.01282.
    NURCIHAN C. Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks[J]. Journal of African Earth Sciences, 2014, 100(11): 634-644.
    CLMENT D and FRDRIC E M. Stationary max-stable processes with the Markov property[J]. Stochastic Processes and their Applications, 2014, 124(6): 2266-2279.
    唐朝伟, 李超群, 燕凯, 等. 基于LISOMAP的相关向量机入侵检测模型[J]. 计算机应用, 2012, 32(9): 2606-2608.
    TANG Chaowei, LI Chaoqun, YAN Kai, et al. Intrusion detection model based on LISOMAP relevant vector machine[J]. Journal of Computer Applications, 2012, 32(9): 2606-2608.
    WANG Li, HU Jianfeng, and LIU Yongwei. Proceedings of an adaptive line search scheme for compressed sensing based on nemirovski's algorithm[C]. Proceedings of the 2nd National Conference on Information Technology and Computer Science, Shanghai, 2015: 7-8.
    GHAEDI M, GHAEDI A M, HOSSAINPOUR M, et al. Least square-support vector (LS-SVM) method for modeling of methylene blue dye adsorption using copper oxide loaded on activated carbon: Kinetic and isotherm study[J]. Journal of Industrial and Engineering Chemistry, 2014, 25(4): 1641-1649.
    李蕴华. 压缩感知框架下基于ROMP 算法的图像精确重构[J]. 计算机应用, 2011, 31(10): 2714-2716.
    LI Yunhua. Precise image reconstruction based on ROMP algorithm in compressive sensing[J]. Journal of Computer Applications, 2011, 31(10): 2714-2716.
    LIN C K Y, Haley K B, and SPARKS C. A comparative study of both standard and adaptive versions of threshold accepting and simulated annealing algorithms in three scheduling problems[J]. European Journal of Operational Research, 1995, 83(2): 330-346.
    OLG A S P, EFSTATHIOS Z, FADY R M, et al. Sensory and microbiological quality assessment of beef fillets using a portable electronic nose in tandem with support vector machine analysis[J]. Food Research International, 2013, 50(1): 241-249.
  • 加载中
计量
  • 文章访问数:  1521
  • HTML全文浏览量:  204
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-17
  • 修回日期:  2016-03-07
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回