高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀疏迭代协方差估计的缺失数据谱分析及时域重建方法

马俊涛 高梅国 董健

马俊涛, 高梅国, 董健. 基于稀疏迭代协方差估计的缺失数据谱分析及时域重建方法[J]. 电子与信息学报, 2016, 38(6): 1431-1437. doi: 10.11999/JEIT151008
引用本文: 马俊涛, 高梅国, 董健. 基于稀疏迭代协方差估计的缺失数据谱分析及时域重建方法[J]. 电子与信息学报, 2016, 38(6): 1431-1437. doi: 10.11999/JEIT151008
MA Juntao, GAO Meiguo, DONG Jian. Sparse Iterative Covariance Estimation-based Approach for Spectral Analysis and Reconstruction of Missing Data[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1431-1437. doi: 10.11999/JEIT151008
Citation: MA Juntao, GAO Meiguo, DONG Jian. Sparse Iterative Covariance Estimation-based Approach for Spectral Analysis and Reconstruction of Missing Data[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1431-1437. doi: 10.11999/JEIT151008

基于稀疏迭代协方差估计的缺失数据谱分析及时域重建方法

doi: 10.11999/JEIT151008
基金项目: 

国家自然科学基金(61401024)

Sparse Iterative Covariance Estimation-based Approach for Spectral Analysis and Reconstruction of Missing Data

Funds: 

The National Natural Science Foundation of China (61401024)

  • 摘要: 应用于缺失数据恢复的迭代自适应方法(IAA)被证实可利用20%的有效数据估计信号参数,并能高精度恢复缺失数据,优于经典GAPES方法,但当缺失数据超过80%时其数据恢复性能迅速下降。该文基于稀疏迭代协方差估计提出一种新的缺失数据谱分析方法(M-SPICE)及针对该方法的缺失数据修正时域重建方法。该方法将加权缺失数据协方差拟合代价函数转换为凸优化问题,构造循环最小化器保证缺失数据参数估计的全局收敛特性,通过对缺失数据估计算子的更新实现了时域重建方法的修正,使其在有效数据功率谱欠估计的情况下获得更高的数据重建精度。仿真实验表明无论是数据块缺失还是任意缺失,该方法均能够利用更少的有效数据进行谱分析,并重建大比例缺失数据。
  • STOICA P, LARSSON E G, and LI Jian. Adaptive filter-bank approach to restoration and spectral analysis of gapped data[J]. The Astronomical Journal, 2000, 120(4): 2163-2173.
    SCHAFER J L and GRAHAM J W. Missing data: our view of the state of the art[J]. Psychological Methods, 2002, 7(2): 147-177.
    BAI Xueru, ZHOU Feng, XING Mengdao, et al. High- resolution radar imaging of air targets from sparse azimuth data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1643-1655.
    王成, 胡卫东, 杜小勇, 等. 稀疏子带的多频段雷达信号融合超分辨距离成像[J]. 电子学报, 2006, 34(6): 985-990.
    WANG Cheng, HU Weidong, and DU Xiaoyong, et al. The super-resolution range imaging based on sparse band multiple frequency bands radars signal fusion[J]. Acta Electronica Sinica, 2006, 34(6): 985-990.
    刘启, 洪文, 谭维贤, 等. 宽角合成孔径雷达二维缺失数据自适应幅相估计成像方法[J]. 电子与信息学报, 2012, 34(3): 616-621. doi: 10.3724/SP.J.1146.2011.00650.
    LIU Qi, HONG Wen, TAN Weixian, et al. Adaptive tuning missing-data amplitude and phase estimation method in wide angle SAR[J]. Journal of Electronics Information Technology, 2012, 34(3): 616-621. doi: 10.3724/SP.J.1146. 2011.00650.
    田彪, 刘洋, 徐世友, 等. 基于几何绕射理论模型高精度参数估计的多频带合成成像[J]. 电子与信息学报, 2013, 35(7): 1532-1539. doi: 10.3724/SP.J.1146.2012.01364.
    TIAN Biao, LIU Yang, XU Shiyou, et al. Multi-band fusion imaging based on high precision parameter estimation of geometrical theory of diffraction model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1532-1539. doi: 10.3724/SP.J.1146.2012.01364.
    YARDIBI T, LI Jian, STOICA P, et al. Source localization and sensing: a nonparametric iterative adaptive approach based on weighted least squares[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 425-443.
    SUN W, SO H C, CHEN Y, et al. Approximate subspace- based iterative adaptive approach for fast two-dimensional spectral estimation[J]. IEEE Transactions on Signal Processing, 2014, 62(12): 3220-3231.
    ZHANG Yongchao, ZHANG Yin, LI W, et al. Divide and conquer: a fast matrix inverse method of iterative adaptive approach for real beam superresolution[C]. International Geoscience and Remote Sensing Symposium (IGARSS), Qubec City, 2014: 698-701.
    GLENTIS G O, JAKOBSSON A, and ANGELOPOULOS K. Block-recursive IAA-based spectral estimates with missing samples using data interpolation[C]. International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, 2014: 350-354.
    STOICA P, LI Jian, and LING J. Missing data recovery via a nonparametric iterative adaptive approach[J]. IEEE Signal Processing Letters, 2009, 16(4): 241-244.
    GLENTIS G O, ZHAO K, JAKOBSSON A, et al. Non-parametric high-resolution SAR imaging[J]. IEEE Transactions on Signal Processing, 2013, 61(7): 1614-1624.
    KARLSSON J, ROWE W, XU L, et al. Fast missing-data IAA with application to notched spectrum SAR[J]. IEEE Transactions on Aerospace Electronic Systems, 2014, 50(2): 959-971.
    STOICA P, PRABHU Babu, and LI Jian. New method of sparse parameter estimation in separable models and its use for spectral analysis of irregularly sampled data[J]. IEEE Transactions on Signal Processing, 2011, 59(1): 35-47.
    STOICA P, PRABHU Babu, and LI Jian. SPICE: a sparse covariance-based estimation method for array processing [J]. IEEE Transactions on Signal Processing, 2011, 59(2): 629-638.
    PARK H R and LI Jie. Sparse covariance-based high resolution time delay estimation for spread spectrum signals [J]. Electronics Letters, 2015, 51(2): 155-157.
  • 加载中
计量
  • 文章访问数:  1513
  • HTML全文浏览量:  155
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-09
  • 修回日期:  2016-01-29
  • 刊出日期:  2016-06-19

目录

    /

    返回文章
    返回