LI Xi, HU Weiming, SHEN Chunhua, et al. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 58. doi: 10.1145/2508037.2508039.
|
袁广林, 薛模根. 基于稀疏稠密结构表示与在线鲁棒字典学习的视觉跟踪[J]. 电子与信息学报, 2015, 37(3): 536-542. doi: 10.11999/JEIT140507.
|
YUAN Guanglin and XUE Mogen. Visual tracking based on sparse dense structure representation and online robust dictionary learning[J]. Journal of Electronics Information Technology, 2015, 37(3): 536-542. doi: 10.11999/JEIT140507.
|
HU Hongwei, MA Bo, and JIA Yunde. Multi-task l0 gradient minimization for visual tracking[J]. Neurocomputing, 2015, 54(1): 41-49. doi: 10.1016/j.neucom.2014.12.021.
|
HU Weiming, LI Wei, ZHANG Xiaoqin, et al. Single and multiple object tracking using a multi-feature joint sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(4): 816-833. doi: 10.1109/ TPAMI.2014.2353628.
|
YIN Yingjie, XU De, WANG Xingang, et al. Online state-based structured SVM combined with incremental PCA for robust visual tracking[J]. IEEE Transactions on Cybernetics, 2015, 45(9): 1988-2000. doi: 10.1109/TCYB. 2014.2363078.
|
KIM D H, KIM H K, LEE S J, et al. Kernel-based structural binary pattern tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(8): 1288-1300. doi: 10.1109/TCSVT.2014.2305514.
|
陈思, 苏松志, 李绍滋, 等. 基于在线半监督 boosting 的协同训练目标跟踪算法[J]. 电子与信息学报, 2014, 36(4): 888-895. doi: 10.3724/SP.J.1146.2013.00826.
|
CHEN Si, SU Songzhi, LI Shaozi, et al. A novel co-training object tracking algorithm based on online semi-supervised boosting[J]. Journal of Electronics Information Technology, 2014, 36(4): 888-895. doi: 10.3724/SP.J.1146.2013.00826.
|
BLUM A and MITCHELL T. Combining labeled and unlabeled data with co-training[C]. Proceedings of ACM 11th Annual Conference on Computational Learning Theory, USA, 1998: 92-100.
|
TANG F, BRENNAN S, ZHAO Q, et al. Co-tracking using semi-supervised support vector machines[C]. IEEE International Conference on Computer Vision, Brazil, 2007: 1-8.
|
YU Q, DINH T B, and MEDIONI G. Online tracking and reacquisition using co-trained generative and discriminative trackers[C]. European Conference on Computer Vision, Springer, Berlin Heidelberg, 2008: 678-691.
|
LIU Rong, CHENG Jian, and LU Hanqing. A robust boosting tracker with minimum error bound in a co-training framework[C]. IEEE International Conference on Computer Vision, Japan, 2009: 1459-1466.
|
BABENKO B, YANG M H, and BELONGIE S. Visual tracking with online multiple instance learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, USA, 2009: 983-990.
|
LU Huchuan, ZHOU Qiuhong, WANG Dong, et al. A co-training framework for visual tracking with multiple instance learning[C]. IEEE International Conference on Automatic Face Gesture Recognition and Workshops, Spain, 2011: 539-544.
|
ZHANG Kaihua, ZHANG Lei, and YANG M H. Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015. doi: 10.1109/TPAMI.2014.2315808.
|
ZHU Jianzhang, MA Yue, QIN Qianqing, et al. Adaptive weighted real-time compressive tracking[J]. IET Computer Vision, 2014, 8(6): 740-752. doi: 10.1049/iet-cvi.2013.0255.
|
DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, USA, 2005: 886-893.
|
HEIKKILA M and PIETIKAINEN M. A texture-based method for modeling the background and detecting moving objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662. doi: 10.1109/ TPAMI.2006.68.
|
ZHOU Zhihua and LI Ming. Tri-training: exploiting unlabeled data using three classifiers[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(11): 1529-1541. doi: 10.1109/TKDE.2005.186.
|
WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, USA, 2013: 2411-2418.
|
ZHANG Kaihua, ZHANG Lei, and YANG M H. Real-time object tracking via online discriminative feature selection [J]. IEEE Transactions on Image Processing, 2013, 22(12): 4664-4677. doi: 10.1109/TIP.2013.2277800.
|
ZHANG Kaihua and SONG Huihui. Real-time visual tracking via online weighted multiple instance learning[J]. Pattern Recognition, 2013, 46(1): 397-411. doi: 10.1016/ j.patcog.2012.07.013.
|