高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直角坐标多级后投影聚束SAR成像算法

董祺 孙光才 杨泽民 左绍山 邢孟道

董祺, 孙光才, 杨泽民, 左绍山, 邢孟道. 直角坐标多级后投影聚束SAR成像算法[J]. 电子与信息学报, 2016, 38(6): 1482-1488. doi: 10.11999/JEIT150990
引用本文: 董祺, 孙光才, 杨泽民, 左绍山, 邢孟道. 直角坐标多级后投影聚束SAR成像算法[J]. 电子与信息学报, 2016, 38(6): 1482-1488. doi: 10.11999/JEIT150990
DONG Qi, SUN Guangcai, YANG Zemin, ZUO Shaoshan, XING Mengdao. Cartesian Coordinates Factorized Back-projection Algorithm for Spotlight SAR[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1482-1488. doi: 10.11999/JEIT150990
Citation: DONG Qi, SUN Guangcai, YANG Zemin, ZUO Shaoshan, XING Mengdao. Cartesian Coordinates Factorized Back-projection Algorithm for Spotlight SAR[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1482-1488. doi: 10.11999/JEIT150990

直角坐标多级后投影聚束SAR成像算法

doi: 10.11999/JEIT150990
基金项目: 

国家自然科学基金(61301280, 61301292)

Cartesian Coordinates Factorized Back-projection Algorithm for Spotlight SAR

Funds: 

The National Natural Science Foundation of China (61301280, 61301292)

  • 摘要: 在局部极坐标系下,快速多级后向投影算法(FFBPA)可以以较低的采样率对子孔径成像,但在不同局部极坐标系之间需大量的2维图像域插值实现图像融合。相比极坐标系,图像融合在直角坐标系下更容易实现。但在直角坐标系下进行子孔径成像的奈奎斯特采样率较高,这将影响直角坐标系下的成像效率。该文针对此问题提出一种谱压缩技术,通过对距离时域和距离频域两次补偿,大幅压缩了直角坐标系下子孔径成像的方位谱宽度。该文算法具有堪比原始后向投影算法(BPA)的成像质量和优于FFBPA的计算效率,且能够应用于非线性轨道SAR。最后通过星载0.1 m仿真实验和机载0.2 m实测实验验证了算法的有效性。
  • 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 2-6.
    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005: 2-6.
    Smith A M. A new approach to range-Doppler SAR processing[J]. International Journal of Remote Sensing, 1991, 12(2): 235-251. doi: 10.1080/01431169108929650.
    侯育星, 陈士超, 唐禹, 等. 基于切比雪夫多项式的新形式调频变标合成孔径雷达成像算法[J]. 电子与信息学报, 2014, 36(11): 2646-2651. doi: 10.3724/SP.J.1146.2013.01624.
    HOU Yuxing, CHEN Shichao, TANG Yu, et al. A new form of chirp scaling algorithm based on Chebyshev polynomials synthetic aperture radar imaging[J]. Journal of Electronics Information Technology, 2014, 36(11): 2646-2651. doi: 10.3724/SP.J.1146.2013.01624.
    MUNSON D C Jr, OBRIEN J D, and JENKINS W K. A tomographic formulation of spotlight mode synthetic aperture radar[J]. Proceedings of the IEEE, 1983, 72(8): 917-925. doi: 10.1109/PROC.1983.12698.
    DURAND R, GINOLHAC G, THIRION-LEFEVRE L, et al. Back projection version of subspace detector SAR processors [J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1489-1497. doi: 10.1109/TAES.2011.5751274.
    杨军, 孙光才, 吴玉峰, 等. 基于方位谱分析的斜视TOPS SAR子孔径成像方法[J]. 电子与信息学报, 2014, 36(4): 923-931. doi: 10.3724/SP.J.1146.2013.00673.
    YANG Jun, SUN Guangcai, WU Yufeng, et al. A subaperture imaging algorithm for squit TOPS SAR based on SPECAN technique[J]. Journal of Electronics Information Technology, 2014, 36(4): 923-931. doi: 10.3724/SP.J.1146. 2013.00673.
    YEGULALP A F. Fast back-projection algorithm for synthetic aperture radar[C]. The Record of the 1999 IEEE Radar Conference, Waltham, Massachusetts, 1999, 60-65. doi: 10.1109/NRC.1999.767270.
    ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace Electronic Systems, 2003, 39(3): 760-776. doi: 10.1109/TAES. 2003. 1238734.
    ZHANG Lei, LI Haolin, and QIAO Zhijun. A fast BP algorithm with wavenumber spectrum fusion for high- resolution spotlight SAR imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(9): 1460-1464. doi: 10.1109/LGRS. 2013.2295326.
    杨泽民, 孙光才, 吴玉峰, 等. 一种新的基于极坐标格式的快速后向投影算法[J]. 电子与信息学报, 2014, 36(3): 537-544. doi: 10.3724/SP.J.1146.2013.00613.
    YANG Zemin, SUN Guangcai, WU Yufeng, et al. A new fast back projection algorithm based on polar format algorithm [J]. Journal of Electronics Information Technology, 2014, 36(3): 537-544. doi: 10.3724/SP.J.1146.2013.00613.
    VU V T, SJOGREN T K, and PETTERSSON M I. SAR imaging in ground plane using fast back-projection for mono- and bistatic cases[C]. 2012 IEEE Radar Conference, Atlanta, USA, 2012: 184-189. doi: 10.1109/RADAR.2012.6212134.
    WANG R, DENG Y K, LOFFELD O, et al. Processing the azimuth-variant bistatic SAR data by using monostatic imaging algorithms based on two-dimensional principle of stationary phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3504-3520. doi: 10.1109/ TGRS.2011.2129573.
    LI J, ZHANG S, and CHANG J. Bistatic forward-looking SAR imaging based on two-dimensional principle of stationary phase[J]. 2012 International Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST), Chengdu, 2012: 1-4. doi: 10.1109/ MMWCST.2012.6238129.
    YANG Zemin, XING Mengdao, ZHANG Lei, et al. A coordinate-transform based FFBP algorithm for high- resolution spotlight SAR imaging[J]. SCIENCE CHINA Information Sciences, 2015, 58(2): 1-11. doi: 10.1007/s11432 -014-5262-x.
    HANSSEN R and BAMLER R. Evaluation of interpolation kernels for SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 318-321. doi: 10.1109/36.739168.
    SELVA J and LOPEZ-SANCHEZ J M. Efficient interpolation of SAR images for coregistration in SAR interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3): 411-415. doi: 10.1109/LGRS.2007.895961.
  • 加载中
计量
  • 文章访问数:  1601
  • HTML全文浏览量:  143
  • PDF下载量:  438
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-06
  • 修回日期:  2016-03-07
  • 刊出日期:  2016-06-19

目录

    /

    返回文章
    返回