高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种快速的基于稀疏表示和非下采样轮廓波变换的图像融合算法

赵春晖 郭蕴霆

赵春晖, 郭蕴霆. 一种快速的基于稀疏表示和非下采样轮廓波变换的图像融合算法[J]. 电子与信息学报, 2016, 38(7): 1773-1780. doi: 10.11999/JEIT150933
引用本文: 赵春晖, 郭蕴霆. 一种快速的基于稀疏表示和非下采样轮廓波变换的图像融合算法[J]. 电子与信息学报, 2016, 38(7): 1773-1780. doi: 10.11999/JEIT150933
ZHAO Chunhui, GUO Yunting. Fast Image Fusion Algorithm Based on Sparse Representation and Non-subsampled Contourlet Transform[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1773-1780. doi: 10.11999/JEIT150933
Citation: ZHAO Chunhui, GUO Yunting. Fast Image Fusion Algorithm Based on Sparse Representation and Non-subsampled Contourlet Transform[J]. Journal of Electronics & Information Technology, 2016, 38(7): 1773-1780. doi: 10.11999/JEIT150933

一种快速的基于稀疏表示和非下采样轮廓波变换的图像融合算法

doi: 10.11999/JEIT150933
基金项目: 

国家自然科学基金(61571145, 61405041),黑龙江省自然科学基金重点资助项目(ZD201216),哈尔滨市优秀学科带头人资金(RC2013XK009003)

Fast Image Fusion Algorithm Based on Sparse Representation and Non-subsampled Contourlet Transform

Funds: 

The National Natural Science Foundation of China (61571145, 61405041), The Key Program of Heilongjiang Province Natural Science Foundation (ZD201216), Excellent Academic Leaders Program of Harbin (RC2013XK009003)

  • 摘要: 为了提高图像融合的效率和质量,该文提出一种基于快速非下采样轮廓波变换(NSCT)和4方向稀疏表示的图像融合算法。该方法首先对源图像进行快速NSCT分解,生成一系列低通和高通子带。对于低频子带,利用自适应生成的DCT过完备字典进行快速的4方向稀疏表示和系数融合;对于高频子带,则利用高斯加权区域能量最大的融合规则进行系数融合。快速NSCT将传统NSCT的树形滤波结构转变为多通道滤波结构,能成倍提高分解效率;快速的稀疏融合则抛弃了传统的滑动窗口方法,以水平、垂直、对角线4个方向进行稀疏表示和稀疏融合,进一步提高算法效率。实验结果表明,提出的快速算法能在不影响融合质量的条件下将算法效率提高近20倍。
  • BURT P J and ANDELSON E H. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31(4): 532-540. doi: 10.1109/TCOM. 1983.1095851.
    LI H, MANJUNATH B, and ITRA S. Multisensor image fusion using the wavelet transform[J]. Graphical Models and Image Processing, 1995, 57(3): 235-245.
    MINH N D and MARTIN V. The finite ridgelet transform for image representation[J]. IEEE Transactions on Image Processing, 2003, 12(1): 16-28. doi: 10.1109/TIP.2002.806252.
    NENCINI F, GARZELLI A, BARONTI S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156.
    CUNHA A L, ZHOU J, and DO M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101. doi: 10.1109/TIP.2006.877507.
    DO M N and VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106. doi: 10.1109/TIP.2005.859376.
    杨晓慧, 贾建, 焦李成. 基于活性测度和闭环反馈的非下采样Contourlet域图像融合[J]. 电子与信息学报, 2010, 32(2): 422-426. doi: 10.3724/SP.J.1146.2008.01038.
    YANG Xiaohui, JIA Jian, and JIAO Licheng. Image fusion algorithm in nonsubsampled contourlet domain based on activity measure and closed loop feedback[J]. Journal of Electronics Information Technology, 2010, 32(2): 422-426. doi: 10.3724/SP.J.1146.2008.01038.
    赵春晖, 马丽娟, 邵国锋. 采用WA-WBA与改进INSCT的图像融合算法[J]. 电子与信息学报, 2014, 36(2): 304-311. doi: 10.3724/SP.J.1146.2013.00542.
    ZHAO Chunhui, MA Lijuan, and SHAO Guofeng. An image fusion algorithm based on WA-WBA and improved non- subsampled contourlet transform[J]. Journal of Electronics Information Technology, 2014, 36(2): 304-311. doi: 10.3724/ SP.J.1146.2013.00542.
    YANG B and LI S. Pixel-level image fusion with simultaneous orthogonal matching pursuit[J]. Information
    Fusion, 2012, 13(1): 10-19.
    LIU Y, LIU S, and WANG Z. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24(1): 147-164.
    ZHENG Wei, SUN Xueqing, HAO Dongmei, et al. Thyroid image fusion based on shearlet transform and sparse representation[J]. Opto-Electronic Engineering, 2015, 42(1): 77-83.
    YAGHOOBI M, WU D, and DAVIES M E. Fast non-negative orthogonal matching pursuit[J]. IEEE Signal Processing Letters, 2015, 22(9): 1229-1233. doi: 10.1109/LSP.2015. 2393637.
    ZHENG Hao and TAO Dapeng. Discriminative dictionary learning via Fisher discrimination K-SVD algorithm[J]. Neurocomputing, 2015, 2015(162): 9-15.
    ZHAO Chunhui, GUO Yunting, and WANG Yulei. A fast fusion scheme for infrared and visible light images in NSCT domain[J]. Infrared Physics Technology, 2015, 2015(72): 266-275.
    首照宇, 胡蓉, 欧阳宁, 等. 基于多尺度稀疏表示的图像融合方法[J]. 计算机工程与设计, 2015, 36(1): 232-235. doi: 10.16208/j.issn1000-7024.2015.01.042.
    SHOU Zhaoyu, HU Rong, OUYANG Ning, et al. Image fusion based on multi-scale sparse representation[J]. Computer Engineering and Design, 2015, 36(1): 232-235. doi: 10.16208/j.issn1000-7024.2015.01.042.
    YIN H T, LI S T, and FANG L Y. Simultaneous image fusion and super-resolution using sparse representation[J]. Information Fusion, 2013, 14(3): 229-240.
    QU G, ZHANG D, and YAN P. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38(7): 313-315.
  • 加载中
计量
  • 文章访问数:  1662
  • HTML全文浏览量:  150
  • PDF下载量:  622
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-13
  • 修回日期:  2016-04-07
  • 刊出日期:  2016-07-19

目录

    /

    返回文章
    返回