高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于颜色属性直方图的尺度目标跟踪算法研究

毕笃彦 库涛 查宇飞 张立朝 杨源

毕笃彦, 库涛, 查宇飞, 张立朝, 杨源. 基于颜色属性直方图的尺度目标跟踪算法研究[J]. 电子与信息学报, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921
引用本文: 毕笃彦, 库涛, 查宇飞, 张立朝, 杨源. 基于颜色属性直方图的尺度目标跟踪算法研究[J]. 电子与信息学报, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921
BI Duyan, KU Tao, ZHA Yufei, ZHANG Lichao, YANG Yuan. Scale-adaptive Object Tracking Based on Color Names Histogram[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921
Citation: BI Duyan, KU Tao, ZHA Yufei, ZHANG Lichao, YANG Yuan. Scale-adaptive Object Tracking Based on Color Names Histogram[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1099-1106. doi: 10.11999/JEIT150921

基于颜色属性直方图的尺度目标跟踪算法研究

doi: 10.11999/JEIT150921
基金项目: 

国家自然科学基金(61472442, 61372167), 陕西省青年科技新星项目(2015KJXX-46)

Scale-adaptive Object Tracking Based on Color Names Histogram

Funds: 

The National Natural Science Foundation of China (61472442, 61372167), The Young Star Science and Technology Program of Shaanxi (2015KJXX-46)

  • 摘要: 利用目标颜色信息的跟踪算法,容易受到环境光照、尺度变化、相似背景等因素的干扰,导致跟踪任务失败。为了克服以上问题,该文提出一种基于颜色属性空间的鲁棒尺度目标跟踪算法。该算法首先将原始的RGB颜色空间映射到颜色属性(Color Names, CN)空间,减少目标颜色在跟踪过程中受环境变化影响。然后采用一种背景加权约束的颜色属性直方图,来抑制相似背景的干扰。最后,为了解决目标尺度变化带来的影响,先用梯度上升法粗略估计尺度,再用约束项精确求解尺度,并利用反向一致性检验,进一步提高尺度估计的准确性。该文选取了5段典型视频进行实验,并与相关算法进行比较。结果表明所提算法能够消除环境光照、阴影、相似背景和尺度变化等因素所带来的影响,在中心位置误差和跟踪成功率性能指标上,优于其它算法。
  • POSSEGGER H, MAUTHNER T, and BISCHOF H. In defense of color-based model-free tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 2113-2120.
    ORON S, BAR-HILLEL A, LEVI D, et al. Locally orderless tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 1940-1947.
    胡良梅, 段琳琳, 张旭东, 等. 融合颜色信息与深度信息的运动目标检测方法[J]. 电子与信息学报, 2014, 36(9): 2047-2052. doi: 10.3724/SP.J.1146.2013.01763.
    HU Liangmei, DUAN Linlin, ZHANG Xudong, et al. Moving object detection based on the fusion of color and depth information[J]. Journal of Electronics Information Technology, 2014, 36(9): 2047-2052. doi: 10.3724/SP.J.1146. 2013.01763.
    MEER P, RAMESH V, and COMANICIU D. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-575.
    张红颖, 胡正. 融合局部三值数量和色度信息的均值漂移跟踪[J]. 电子与信息学报, 2014, 36(3): 624-630. doi: 10.3724/ SP.J.1146.2013.01155.
    ZHANG Hongying and HU Zheng. Mean shift tracking method combing local ternary number with hue information[J]. Journal of Electronics Information Technology, 2014, 36(3): 624-630. doi: 10.3724/SP.J.1146. 2013.01155.
    Van de WEIJER J, SCHMID C, and VERBEEK J. Learning color names from real-world Images[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007: 1-8.
    Van de WEIJER J, SCHMID C, VERBEEK J, et al. Learning color names for real-world applications[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1512-1523.
    KHAN F S, Van de WEIJER J, and VANRELL M. Modulating shape features by color attention for object recognition[J]. International Journal of Computer Vision, 2012, 98(1): 49-64.
    KHAN F S, ANWER R M, Van de WEIJER J, et al. Color attributes for object detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA, 2012: 3306-3313.
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1090-1097.
    COMANICIU D, RAMESH V, and MEER P. Real-time tracking of non-rigid objects using mean shift[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, 2000: 142-149.
    NING J, ZHANG L, ZHANG D, et al. Scale and orientation adaptive mean shift tracking[J]. IET Computer Vision, 2012, 6(1): 52-61.
    VOJIR T, NOSKOVA J, and MATAS J. Robust scale- adaptive mean-shift for tracking[J]. Pattern Recognition Letters, 2014, 49(1): 250-258.
    WU Y, LIM J, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Oregon, USA, 2013: 2411-2418.
    BOUGUET J Y. Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm[J]. Intel Corporation, 2001, 5(4): 1-10.
  • 加载中
计量
  • 文章访问数:  1527
  • HTML全文浏览量:  196
  • PDF下载量:  1651
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-07
  • 修回日期:  2016-01-22
  • 刊出日期:  2016-05-19

目录

    /

    返回文章
    返回