高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于感兴趣区域和HOG-MBLBP特征的交通标识检测

刘成云 常发亮 陈振学

刘成云, 常发亮, 陈振学. 基于感兴趣区域和HOG-MBLBP特征的交通标识检测[J]. 电子与信息学报, 2016, 38(5): 1092-1098. doi: 10.11999/JEIT150918
引用本文: 刘成云, 常发亮, 陈振学. 基于感兴趣区域和HOG-MBLBP特征的交通标识检测[J]. 电子与信息学报, 2016, 38(5): 1092-1098. doi: 10.11999/JEIT150918
LIU Chengyun, CHANG Faliang, CHEN Zhenxue. Traffic Sign Detection Based on Regions of Interest and HOG-MBLBP Features[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1092-1098. doi: 10.11999/JEIT150918
Citation: LIU Chengyun, CHANG Faliang, CHEN Zhenxue. Traffic Sign Detection Based on Regions of Interest and HOG-MBLBP Features[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1092-1098. doi: 10.11999/JEIT150918

基于感兴趣区域和HOG-MBLBP特征的交通标识检测

doi: 10.11999/JEIT150918
基金项目: 

国家自然科学基金(61273277, 61203261),山东省自然科学基金(ZR2011FM032, ZR2012FQ003),高等学校博士学科点专项科研基金(20130131110038)

Traffic Sign Detection Based on Regions of Interest and HOG-MBLBP Features

Funds: 

The National Natural Science Foundation of China (61273277, 61203261), Shandong Province Natural Science Foundation (ZR2011FM032, ZR2012FQ003), Specialized Research Fund for the Doctoral Program of Higher Education (20130131110038)

  • 摘要: 交通标识检测中样本类别间的不平衡常常导致分类器的检测性能弱化,为了克服这一问题,该文提出一种基于感兴趣区域和HOG-MBLBP融合特征的交通标识检测方法。首先采用颜色增强技术分割提取出自然背景中交通标识所在的感兴趣区域;然后对标识样本库提取HOG-MBLBP融合特征,并用遗传算法对SVM交叉验证进行参数的优化选取,以此来训练和提升SVM分类器性能;最后将提取的感兴趣区域图像的HOG-MBLBP特征送入训练好的SVM多分类器,进行进一步的精确检测和定位,剔除误检区域。在自建的中国交通标识样本库上进行了实验,结果表明所提方法能达到99.2%的分类准确度,混淆矩阵结果也表明了该方法的优越性。
  • 刘华平, 李建民, 胡晓林, 等. 动态场景下的交通标识检测与识别研究进展[J]. 中国图象图形学报, 2013, 18(5): 493-503.
    LIU Huaping, LI Jianmin, HU Xiaolin, et al. Recent progress in detection and recognition of the traffic signs in dynamic scenes[J]. Journal of Image and Graphics, 2013, 18(5): 493-503.
    常发亮, 黄翠, 刘成云, 等. 基于高斯颜色模型和SVM的交通标志检测[J]. 仪器仪表学报, 2014, 35(1): 43-49.
    CHANG Faliang, HUANG Cui, LIU Chengyun, et al. Traffic sign detection based on Gaussian color model and SVM[J]. Chinese Journal of Scientific Instrument, 2014, 35(1): 43-49.
    MALDONADO-BASCON S, LAFUENTE-ARROYO S, GIL-JIMENEZ P, et al. Road-sign detection and recognition based on support vector machines[J]. IEEE Transactions on Intelligent Transportation Systems, 2007, 8(2): 264-278. doi: 10.1109/TITS.2007.895311.
    徐迪红, 唐炉亮. 基于颜色和标志边缘特征的交通标志检测[J].武汉大学学报(信息科学版), 2008, 33(4): 433-436.
    XU Dihong and TANG Luliang. Traffic sign detection based on color and boundary feature[J].Geomatics and Information Science of Wuhan University, 2008, 33(4): 433-436.
    GARCIA-GARRIDO M A, SOTELO M A, and MARTIN- GOROSTIZA E. Fast road sign detection using hough transform for assisted driving of road vehicles[C]. Proceedings of 10th International Conference on Computer Aided Systems Theory, Berlin, 2005: 543-548.
    HOFERLIN B and ZIMMERMANN K. Towards reliable traffic sign recognition[C]. Proceedings of the IEEE Intelligent Vehicles Symposium, Xian, 2009: 324-329.
    KHAN J F, BHUIYAN S, and ADHAMI R R. Image segmentation and shape analysis for road-sign detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(1): 83-96. doi: 10.1109/TITS.2010.2073466.
    CARAFFI C, CARDARELLI E, MEDICI P, et al. An algorithm for Italian de-restriction signs detection[C]. Proceedings of the IEEE Intelligent Vehicles Symposium, Eindhoven, 2008: 834-840.
    ZAKLOUTA F and STANCIULESCU B. Real-time traffic sign recognition in three stages[J]. Robotics and Autonomous System, 2014, 62(1): 16-24. doi: 10.1016/j.robot.2012.07.019.
    LIU C, CHANG F, and CHEN Z. Rapid multiclass traffic sign detection in high-resolution images[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(6): 2394-2403. doi: 10.1109/TITS.2014.2314711.
    潘泓, 李晓兵, 金立左, 等. 一种基于二值粒子群优化和支持向量机的目标检测算法[J]. 电子与信息学报, 2011, 33(1): 117-121. doi: 10.3724/SP.J.1146.2010.00260.
    PAN Hong, LI Xiaobing, JIN Lizuo, et al. A binary particle swarm optimization and support vector machine-based algorithm for object detection[J]. Journal of Electronics Information Technology, 2011, 33(1): 117-121. doi: 10.3724/ SP.J.1146.2010.00260.
    李骏扬, 金立左, 费树岷, 等. 基于多尺度特征表示的城市道路检测[J]. 电子与信息学报, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    LI Junyang, JIN Lizuo, FEI Shumin, et al. Urban road detection based on multi-scale feature representation[J]. Journal of Electronics Information Technology, 2014, 36(11): 2578-2585. doi: 10.3724/SP.J.1146.2014.00271.
    LILLO-CASTELLANO J M, MORA-JIMENEZ I, FIGUERA- POZUELO C, et al. Traffic sign segmentation and classification using statistical learning methods[J]. Neurocomputing, 2015, 153: 286-299. doi: 10.1016/ j.neucom. 2014. 11.026.
    SALTI S, PETRELLI A, TOMBARI F, et al. Traffic sign detection via interest region extraction[J]. Pattern Recognition, 2015, 48(4): 1039-1049. doi: 10.1016/ j.patcog. 2014.05.017.
    RUTA A, LI Y, and LIU X. Real-time traffic sign recognition from video by class-specific discriminative features[J]. Pattern Recognition, 2010, 43(1): 416-430. doi: 10.1016/j. patcog.2009.05.018.
    RUTA A, PORIKLI F, WATANABE S, et al. In-vehicle camera traffic sign detection and recognition[J]. Machine Vision and Applications, 2011, 22(2): 359-375. doi: 10.1007/ s00138-009-0231-x.
    DALAL N and TRIGGS B. Histograms of oriented gradients for human detection[C]. Proceedings of the International Conference on Computer Vision and Pattern Recognition, Beijing, 2005: 886-893.
    OJALA T, PIETIKAINEN M, and MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987. doi: 10.1109/TPAMI.2002.1017623.
    WANG X, HAN T X, and YAN S. An HOG-LBP human detector with partial occlusion handling[C]. Proceedings of 12th IEEE International Conference on Computer Vision, Kyoto, 2009: 32-39.
    陈龙, 潘志敏, 毛庆洲, 等. 利用HOG-LBP自适应融合特征实现禁令交通标志检测[J]. 武汉大学学报(信息科学版), 2013, 38(2): 191-194.
    CHEN Long, PAN Zhimin, MAO Qingzhou, et al. HOG-LBP adaptable fused features based method for forbidden traffic signs detection[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 191-194.
    CORTES C and VAPNIK V. Support-vector network[J]. Machine Learning, 1995, 20(3): 273-297. doi: 10.1023/ A:1022627411411.
    刘志强, 吕学, 张利. 基于多分类GA-SVM的高速公路AID模型[J]. 系统工程理论与实践, 2013, 33(8): 2110-2115.
    LIU Zhiqiang, L Xue, and ZHANG Li. Highway automatic incident detection based on multi-class classification and GA-SVM[J]. Systems Engineering-Theory Practice, 2013, 33(8): 2110-2115.
  • 加载中
计量
  • 文章访问数:  1767
  • HTML全文浏览量:  127
  • PDF下载量:  391
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-05
  • 修回日期:  2015-12-25
  • 刊出日期:  2016-05-19

目录

    /

    返回文章
    返回