高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

八维广义同步系统在伪随机数发生器中的应用

韩丹丹 闵乐泉 赵耿

韩丹丹, 闵乐泉, 赵耿. 八维广义同步系统在伪随机数发生器中的应用[J]. 电子与信息学报, 2016, 38(5): 1158-1165. doi: 10.11999/JEIT150899
引用本文: 韩丹丹, 闵乐泉, 赵耿. 八维广义同步系统在伪随机数发生器中的应用[J]. 电子与信息学报, 2016, 38(5): 1158-1165. doi: 10.11999/JEIT150899
Yang De-Zhao, Ou Pan , Lin Zhi-Li, Song Ning-Fang. High-accuracy Frequency Estimation Synthetic Algorithm in Laser Doppler Velocity Radar[J]. Journal of Electronics & Information Technology, 2011, 33(7): 1689-1693. doi: 10.3724/SP.J.1146.2010.01373
Citation: HAN Dandan, MIN Lequan, ZHAO Geng. Application of 8-dimensional Generalized Synchronization System in Pseudorandom Number Generator[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1158-1165. doi: 10.11999/JEIT150899

八维广义同步系统在伪随机数发生器中的应用

doi: 10.11999/JEIT150899
基金项目: 

国家自然科学基金(61074192, 61170037)

Application of 8-dimensional Generalized Synchronization System in Pseudorandom Number Generator

Funds: 

The National Natural Science Foundation of China (61074192, 61170037)

  • 摘要: 该文提出一类4维离散系统。利用系统平衡点处 Jacobi 矩阵的特征值来分析系统在平衡点处的稳定性,建立了一个判别这类系统为周期或混沌的定理。依据该定理构造了一个新的4维离散系统。该系统具有正的Lyapunov指数,数值模拟显示该系统的动力学行为具有混沌特性。结合该系统和系统广义同步定理构造了一个8维广义同步混沌系统。利用该系统构造了一个16 bit混沌伪随机数发生器 (CPRNG),其密钥空间大于21245。利用FIPS 140-2 检测/广义FIPS 140-2检测判别标准分别检测由CPRNG, Narendra RBG, RC4 PRNG和ZUC PRNG生成的1000个长度为20000 bit的密钥流的随机性。检测结果表明,分别有100%/99%, 100%/82.9%, 99.9%/ 98.8%和100%/97.9%密钥流通过FIPS 140-2检测/广义FIPS 140-2 检测标准。数值仿真显示不同密钥流之间有平均50.004%不同码。结果说明设计的伪随机数发生器有好的随机性,可以抵抗穷尽攻击。该文提出的CPRNG为密码安全的研究与发展提供了新的工具。
  • SPROTT J G. Chaos and Time-sries Analysis[M]. Oxford: Oxford University Press, 2003: 1-120.
    LI Tianyan and YORKE J A. Period three implies chaos[J]. The American Mathematical Monthly, 1975, 82(10): 985-992.
    BARBERIS G E. Non-periodic pseudo-random numbers used in Monte Carlo calculations[J]. Physica B-Condensed Matter, 2007, 398: 468-471. doi: 10.1016/j.physb.2007.04.088.
    DIAZ N C, GIL A V, and VARGAS M J. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry[J]. Applied Radiation and Isotopes, 2010, 68(3): 469-473. doi: 10.1016/ j.apradiso.2009.11.037
    JOAN M S, JOAQUIN G A, and JORDI H J. J3Gen: a PRNG for low-cost passive RFID[J]. Sensors, 2013, 13(3): 3816-3830. doi: 10.3390/s130303816.
    HARASE S. On the F2-linear relations of Mersenne Twister pseudorandom number generators[J]. Mathematics and Computers in Simulation, 2014, 100(1): 103-113. doi: 10. 1016/j.matcom.2014.02.002.
    PATIDAR V, PAREEK N K, PUROHIT G, et al. A robust and secure chaotic standard map based pseudorandom permutation-substitution scheme for image encryption[J]. Optics Communications, 2011, 284(19): 4331-4339. doi: 10. 1016/j.optcom.2011.05.028.
    TIAN Hui, ZHOU Ke, and LU Jing. A VoIP-based covert communication scheme using compounded pseudorandom sequence[J]. International Journal of Advancements in Computing Technology, 2012, 4(1): 223-230. doi: 10.4156/ ijact.vol4.issue1.25.
    MIN Lequan and CHEN Guanrong. A novel stream encryption scheme with avalanche effect[J]. The European Physical Journal B, 2013, 86(11): 459-472. doi: 10.1140/ epjb/e2013-40199-7.
    HAZARIKA N and SAIKIA M. A novel partial image encryption using chaotic logistic map[C]. Proceedings of 2014 International Conference on Signal Processing and Integrated Networks (SPIN), Noida, 2014: 231-236.
    WANG Xingyuan, LIU Lintao, and ZHANG Yingqian. A novel chaotic block image encryption algorithm based on dynamic random growth technique[J]. Optics and Lasers in Engineering, 2015, 66(1): 10-18. doi: 10.1016/j.optlaseng. 2014.08.005.
    NIST. Fips-pub-140 Security Requirements for Cryptographic Modules[M]. Gaithersburg: NIST Special Publication, 2001: 1-30.
    RUKHIN R, SOTO J, NECHVATAL J, et al. SP800-22-2001. a statistical test suite for random and pseudorandom number generator for cryptographic applications[S]. 2001.
    王蕾, 汪芙平, 王赞基. 一种新型的混沌伪随机数发生器[J]. 物理学报, 2006, 55(8): 3964-3968.
    WANG Lei, WANG Fuping, and WANG Zanji. A novel chaos based pseudorandom number generator[J]. Acta Physica Sinica, 2006, 55(8): 3964-3968.
    王华伟. 无理数发生器及确定性随机数发生器[J]. 武汉理工大学学报(交通科学与工程版), 2012, 36(1): 215-218.
    WANG Huawei. Irrational number generator and deterministic random bit generator[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2012, 36(1): 215-218.
    NARENDRA K P, VINOD P, and KRISHAN K S. A random bit generator using chaotic maps[J]. International Journal of Network Security, 2010, 10(1): 32-38.
    FRANCOIS M, GROSGES T, and BARCHIESI D. Pseudo-random number generator based on mixing of three chaotic maps[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(4): 887-895. doi: 10.1016/ j.cnsns.2013.08.032.
    AKHSHANI A, AKHAVAN A, and MOBARAKI A. Pseudo random number generator based on quantum chaotic map[J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1): 101-111. doi: 10.1016/j.cnsns.2013. 06.017.
    ZANG Hongyan, MIN Lequan, and ZHAO Geng. A generalized synchronization theorem for discrete-time chaos system with application in data encryption scheme[C]. Proceedings of 2007 International Conference on Communications, Kokura, Fukuoka Japan, 2007: 1325-1329.
    MIN Lequan, HAO Longjie, and ZHANG Lijiao. Study on the statistical test for string pseudorandom number generators[J]. Advances in Brain Inspired Cognitive Systems, 2013, 7888(1): 278-287. doi: 10.1007/978-3-642-38786-9_32.
    MIN Lequan, CHEN Tianyu, and ZANG Hongyan. Analysis of Fips 140-2 test and chaos- based pseudorandom number generator[J]. Chaotic Modeling and Simulation, 2013, 2(1): 273-280.
    GOLOMB S. Shift Register Sequences[M]. Laguna Hills: Aegean Park Press, 1981: 1-100.
    ETSI/SAGE TS 35.222-2011. Specification of the 3GPP confidentiality and integrity algorithms 128-EEA3 128-EIA3. Document 2: ZUC Specification[S]. 2011.
  • 期刊类型引用(7)

    1. 周浩楠,王熙. 农机车载微波多普勒测速雷达设计及试验研究. 农机化研究. 2025(06): 226-231 . 百度学术
    2. 张建宏,武锦辉,王高,刘吉,苏凝钢,金源. 多普勒雷达弹丸测速信号的速度重建方法. 中国测试. 2020(04): 31-35 . 百度学术
    3. 王冰瑞,于亚楠. 多普勒天气雷达天线扫描速度提高前后的数据分析与对比. 国外电子测量技术. 2020(06): 42-48 . 百度学术
    4. 张建宏,武锦辉,刘吉,苏凝钢. 基于FPGA的多普勒雷达测速系统. 国外电子测量技术. 2019(12): 72-75 . 百度学术
    5. 胡姝玲,李军,黄鑫,李晓佩,刘冬雪. 基于激光多普勒测速雷达自相关检测算法研究. 半导体光电. 2017(02): 278-282+287 . 百度学术
    6. 赵洋,钱卫平. 基于最小熵准则的频偏估计算法研究. 飞行器测控学报. 2015(06): 517-521 . 百度学术
    7. 韩艳峰. 直接计数法瞬时测频的误差分析. 测控技术. 2014(09): 154-156 . 百度学术

    其他类型引用(4)

  • 加载中
计量
  • 文章访问数:  1278
  • HTML全文浏览量:  123
  • PDF下载量:  278
  • 被引次数: 11
出版历程
  • 收稿日期:  2015-07-30
  • 修回日期:  2015-12-18
  • 刊出日期:  2016-05-19

目录

    /

    返回文章
    返回