高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法

佘青山 陈希豪 高发荣 罗志增

佘青山, 陈希豪, 高发荣, 罗志增. 基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法[J]. 电子与信息学报, 2016, 38(5): 1266-1270. doi: 10.11999/JEIT150851
引用本文: 佘青山, 陈希豪, 高发荣, 罗志增. 基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法[J]. 电子与信息学报, 2016, 38(5): 1266-1270. doi: 10.11999/JEIT150851
SHE Qingshan, CHEN Xihao, GAO Farong, LUO Zhizeng. Feature Extraction of Electroencephalography Based on LASSO-Granger Causality Between Brain Region of Interest[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1266-1270. doi: 10.11999/JEIT150851
Citation: SHE Qingshan, CHEN Xihao, GAO Farong, LUO Zhizeng. Feature Extraction of Electroencephalography Based on LASSO-Granger Causality Between Brain Region of Interest[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1266-1270. doi: 10.11999/JEIT150851

基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法

doi: 10.11999/JEIT150851
基金项目: 

国家自然科学基金(61201302, 61172134),国家留学基金(201308330297),浙江省自然科学基金(LY15F010009)

Feature Extraction of Electroencephalography Based on LASSO-Granger Causality Between Brain Region of Interest

Funds: 

The National Natural Science Foundation of China (61201302, 61172134), State Scholarship Fund of China (201308330297), Natural Science Foundation of Zhejiang Province (LY15F010009)

  • 摘要: 该文将脑功能网络引入到脑电特征提取的研究中,提出一种基于感兴趣脑区LASSO-Granger因果关系的新方法,克服了当前基于孤立脑区的研究方法的不足。先利用主成分分析提取各感兴趣区的最大主成分,然后计算它们之间的LASSO-Granger因果度量,并将其作为特征向量,最后输入支持向量机分类器,对BCI Competition IV dataset 1中的4组数据进行分类识别。结果表明,基于感兴趣脑区间LASSO-Granger因果关系分析和支持向量机分类器的方法对不同的运动想象任务识别率较高,提供了新的研究思路。
  • ARBONELL F, NAGANO-SAITO A, LEYTON M, et al. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks[J]. Neuropharmacology, 2014, 84: 90-100.
    闫铮, 高小榕, 应俊. 基于认知功能连接的信息流增益计算方法及应用[J]. 电子与信息学报, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019.
    YAN Zheng, GAO Xiaorong, and YING Jun. The flow gain methods and applications based on cognition functional connectivity[J]. Journal of Electronics Information Technology, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146. 2013.02019.
    GRABBERR L, JOLA C, BERRA G, et al. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis[J]. NeuroRehabilitation, 2015, 37(2): 263-271.
    DING M, CHEN Y, and BRESSLER S L. Granger causality: basic theory and application to neuroscience[J]. Handbook of Time Series Analysis: Recent Theoretical Developments and Applications, 2006, 17: 437-460.
    吴明权, 李海峰, 马琳. 单通道脑电信号中眼电干扰的自动分离方法[J]. 电子与信息学报, 2015, 37(2): 367-372. doi: 10.11999/JEIT140602.
    WU Mingquan, LI Haifeng, and MA Lin. Automatic electrooculogram separation method for single channel electroencephalogram signals[J]. Journal of Electronics Information Technology, 2015, 37(2): 367-372. doi: 10.11999 /JEIT140602.
    吕俊, 谢胜利, 章晋龙. 脑-机接口中基于ERS/ERD的自适应空间滤波算法[J]. 电子与信息学报, 2009, 31(2): 314-318.
    Jun, XIE Shengli, and ZHANG Jinlong. Adaptive spatial filter based on ERD/ERS for brain-computer interfaces[J]. Journal of Electronics Information Technology, 2009, 31(2): 314-318.
    李卫娜, 郑小林, 吴南, 等. 应用因果分析方法对癫痫发作间期头皮脑电信号进行致痫灶定侧[J]. 国际生物医学工程杂志, 2013, 36(5): 261-265.
    LI Weina, ZHENG Xiaolin, WU Nan, et al. Epileptic foci lateralization from interictal scalp EEG by applying causal analysis[J]. International Journal of Biomedical Engineering, 2013, 36(5): 261-265.
    EPSTEIN C M, ADHIKARI B M, GROSS R, et al. Application of high-frequency Granger causality to analysis of epileptic seizures and surgical decision making[J]. Epilepsia, 2014, 55(12): 2038-2047.
    NICOLAOU N, HOURR S, ALEXANDROU P, et al. EEG- based automatic classification of awake versus anesthetized state in general anesthesia using Granger causality[J]. PLoS One, 2012, 7(3): e33869.
    ARNOLD A, LIU Y, and ABE N. Temporal causal modeling with graphical granger methods[C]. Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2007: 66-75.
    BENJAMIN B, DORNHERE G, KRAUEDAT M, et al. The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects[J]. NeuroImage, 2007, 37(2): 539-550.
    JOHN S . Cortical functions[Z]. Routledge, 1999: 30-45.
    GAO Qing, DUAN Xujun, and CHEN Huafu. Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality[J]. NeuroImage, 2011, 54(2): 1280-1288.
    FRASER A M and SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134-1140.
    ZHANG H, CHIN Z Y, ANG K K, et al. Optimum spatio- spectral filtering network for braincomputer interface[J]. IEEE Transactions on Neural Networks, 2011, 22(1): 52-63.
    PARK C, LOONEY D, AHRABIAN A, et al. Classification of motor imagery BCI using multivariate empirical mode decomposition[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(1): 10-22.
  • 加载中
计量
  • 文章访问数:  1840
  • HTML全文浏览量:  228
  • PDF下载量:  482
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-16
  • 修回日期:  2016-01-29
  • 刊出日期:  2016-05-19

目录

    /

    返回文章
    返回