高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于人眼对比度敏感视觉特性的图像自适应量化方法

姚军财 刘贵忠

姚军财, 刘贵忠. 一种基于人眼对比度敏感视觉特性的图像自适应量化方法[J]. 电子与信息学报, 2016, 38(5): 1202-1210. doi: 10.11999/JEIT150848
引用本文: 姚军财, 刘贵忠. 一种基于人眼对比度敏感视觉特性的图像自适应量化方法[J]. 电子与信息学报, 2016, 38(5): 1202-1210. doi: 10.11999/JEIT150848
YAO Juncai, LIU Guizhong. An Adaptive Quantization Method of Image Based on the Contrast Sensitivity Characteristics of Human Visual System[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1202-1210. doi: 10.11999/JEIT150848
Citation: YAO Juncai, LIU Guizhong. An Adaptive Quantization Method of Image Based on the Contrast Sensitivity Characteristics of Human Visual System[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1202-1210. doi: 10.11999/JEIT150848

一种基于人眼对比度敏感视觉特性的图像自适应量化方法

doi: 10.11999/JEIT150848
基金项目: 

国家自然科学基金(61301237),陕西省青年科技新星计划(2015KJXX-42),陕西省教育厅专项科研基金(15JK1139)

An Adaptive Quantization Method of Image Based on the Contrast Sensitivity Characteristics of Human Visual System

Funds: 

The National Natural Science Foundation of China (61301237), The Scientific and Technological New-star Plan of Shaanxi Province, China (2015KJXX-42), The Specialized Research Foundation of Shaanxi Province Education Department, China (15JK1139)

  • 摘要: 为了提高图像的压缩比和压缩质量,结合人眼对比度敏感视觉特性和图像变换域频谱特征,该文提出一种自适应量化表的构建方法。并将该表代替JPEG中的量化表,且按照JPEG的编码算法对3幅不同的彩色图像进行了压缩仿真实验验证,同时与JPEG压缩作对比分析。实验结果表明:与JPEG压缩方法相比,在相同的压缩比下,采用自适应量化压缩后,3幅解压彩色图像的SSIM和PSNR值分别平均提高了1.67%和4.96%。表明该文提出的结合人眼视觉特性的自适应量化是一种较好的、有实用价值的量化方法。
  • BENOIT A, CAPLIER A, DURETTE B, et al. Using human visual system modeling for bio-inspired low level image processing[J]. Computer Vision Image Understanding, 2010, 114(7): 758-773. doi: 10.1016/j.cviu.2010.01.011.
    STAROSOLSKI R. New simple and efficient color space transformations for lossless image compression[J]. Journal of Visual Communication and Image Representation, 2014, 25(5): 1056-1063. doi: 10.1016/j.jvcir.2014.03.003.
    OU Y F, XUE Y Y, and WANG Y. Q-STAR: a perceptual video quality model considering impact of spatial, temporal and amplitude resolution[J]. IEEE Transactions on Image Processing, 2014, 23(6): 2473-2486. doi: 10.1109/TIP.2014. 2303636.
    DOUAK F, BENZID R, and BENOUDJIT N. Color image compression algorithm based on the DCT transform combined to an adaptive block scanning[J]. AEU International Journal of Electronics and Communications, 2011, 65(1): 16-26. doi: 10.1016/j.aeue.2010.03.003.
    CHOU C H and LIU K C. Color image compression based on the measure of just noticeable color difference[J]. IET Image Processing, 2008, 2(6): 304-322. doi: 10.1049/iet-ipr: 20080034.
    MULLEN K T. The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings[J]. The Journal of Physiology, 1985, (359): 381-400. doi: 10.1113/jphysiol.1985.sp015591.
    NADENAU M. Integration of human color vision models into high quality image compression[D]. [Ph.D. dissertation],cole Polytechnique Fdrale de Lausanne, Switzerland, 2000: 69-112.
    PELI E. Contrast sensitivity function and image discrimination[J]. Journal of the Optical Society of America A, 2001, 18(2): 283-293. doi: 10.1364/JOSAA.18.000283.
    WATSON A B. Visual optimization of DCT quantization matrices for individual images[C]. Proceedings of 9th Computing in Aerospace Conference, San Diego, CA, U.S.A, 1993: 286-291. doi: 10.1109/DCC.1993.253132
    JIMENEZ-RODRIGUEZ L, AULI-LLINAS F, and Marcellin M W. Visually lossless strategies to decode and transmit JPEG2000 imagery[J]. IEEE Signal Processing Letters, 2014, 21(1): 35-38. doi: 10.1109/LSP.2013.2290317.
    GINESU G, MASSIDDA F, and GIUSTO D D. A multi- factors approach for image quality assessment based on a human visual system model[J]. Signal Processing: Image Communication, 2006, 21(4): 316-333. doi: 10.1016/j.image. 2005.11.005.
    WANG X, JIANG G Y, ZHOU J M, et al. Visibility threshold of compressed stereoscopic image: effects of asymmetrical coding[J]. Journal of Imaging Science, 2013, 61(2): 172-182. doi: 10.1179/1743131X11Y.0000000035.
    肖迪, 邓秘密, 张玉书. 基于压缩感知的鲁棒可分离的密文域水印算法[J]. 电子与信息学报, 2015, 37(5): 1248-1254. doi: 10.11999/JEIT141017.
    XIAO D, DENG M M, and ZHANG Y S. Robust and separable watermarking algorithm in encrypted image based on compressive sensing[J]. Journal of Electronics Information Technology, 2015, 37(5): 1248-1254. doi: 10. 11999/JEIT141017.
    LU Z, LIN W, and YANG X, et al. Modeling visual attention's modulatory aftereffects on visual sensitivity and quality evaluation[J]. IEEE Transactions on Image Processing, 2005, 14(11): 1928-1942. doi: 10.1109/TIP.2005. 854478
    吴倩, 张荣, 徐大卫. 基于稀疏表示的高光谱数据压缩算法[J]. 电子与信息学报, 2015, 37(1): 78-84. doi: 10.11999/ JEIT140214.
    WU Q, ZHANG R, and XU D W. Hyperspectral data compression based on sparse representation [J]. Journal of Electronics Information Technology, 2015, 37(1): 78-84. doi: 10.11999/JEIT140214.
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861.
    姜求平, 邵枫, 蒋刚毅, 等. 基于视觉重要区域的立体图像视觉舒适度客观评价方法[J]. 电子与信息学报, 2014, 36(4): 875-881. doi: 10.3724/SP.J.1146.2013.00946.
    JIAN Q P, SHAO F, JIAN G Y, et al. An objective stereoscopic image visual comfort assessment metric based on visual important regions[J]. Journal of Electronics Information Technology, 2014, 36(4): 875-881. doi: 10.3724/ SP.J.1146.2013.00946.
  • 加载中
计量
  • 文章访问数:  1754
  • HTML全文浏览量:  132
  • PDF下载量:  598
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-16
  • 修回日期:  2015-12-18
  • 刊出日期:  2016-05-19

目录

    /

    返回文章
    返回