高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分形特性改进的EMD目标检测算法

张林 李秀友 刘宁波 关键

张林, 李秀友, 刘宁波, 关键. 基于分形特性改进的EMD目标检测算法[J]. 电子与信息学报, 2016, 38(5): 1041-1046. doi: 10.11999/JEIT150731
引用本文: 张林, 李秀友, 刘宁波, 关键. 基于分形特性改进的EMD目标检测算法[J]. 电子与信息学报, 2016, 38(5): 1041-1046. doi: 10.11999/JEIT150731
ZHANG Lin, LI Xiuyou, LIU Ningbo, GUAN Jian. Improved EMD Target Detection Method Based on Mono Fractal Characteristics[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1041-1046. doi: 10.11999/JEIT150731
Citation: ZHANG Lin, LI Xiuyou, LIU Ningbo, GUAN Jian. Improved EMD Target Detection Method Based on Mono Fractal Characteristics[J]. Journal of Electronics & Information Technology, 2016, 38(5): 1041-1046. doi: 10.11999/JEIT150731

基于分形特性改进的EMD目标检测算法

doi: 10.11999/JEIT150731
基金项目: 

国家自然科学基金(61501487, 61471382, 61401495, 61201445, 61179017),山东省自然科学基金(2015ZRA06052),泰山学者建设工程专项经费

Improved EMD Target Detection Method Based on Mono Fractal Characteristics

Funds: 

The National Natural Science Foundation of China (61501487, 61471382, 61401495, 61201445, 61179017), The Natural Science Foundation of Shandong Province (2015ZRA 06052), The Special Funds of Taishan Scholars Construction Engineering

  • 摘要: 为克服原有检测算法在目标和海杂波混叠时检测性能下降的问题,该文提出一种基于分形特性改进的经验模态分解(EMD)目标检测算法。该算法对原始信号经经验模态分解后得到的固有模态函数进行数据重构,再采用快速傅里叶变换获得去噪后的海杂波单元和目标单元的频谱,计算两者的单一Hurst指数,并将其输入非参量检测器中进行目标检测。研究表明,虽然目标和海杂波在频谱中难以区分,但两者在无标度区间内的单一Hurst指数存在差异,因此所提检测算法相比于原有频域检测算法性能更优。
  • HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society, 1998, 454: 903-995.
    YANG Gongliu, LIU Yuanyuan, WANG Yanyong, et al. EMD interval thresholding denoising based on similarity measure to select relevant modes[J]. Signal Processing, 2015, 109: 95-109.
    AHMET Mert and AVDIN Akan. Detrended fluctuation thresholding for empirical mode decomposition based denoising[J]. Digital Signal Processing, 2014, 32: 48-56.
    FAIRCHILD D P and NARAYANAN R M. Classification of human motions using empirical mode decomposition of human micro-Doppler signatures[J]. IET Radar, Sonar Navigation, 2014, 8(5): 425-434.
    YUAN Bin, CHEN Zengping, and XU Shiyou. Micro- Doppler analysis and separation based on complex local mean decomposition for aircraft with fast-rotating parts in ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 1285-1298.
    SONG Rui, GUO Huadong, and LIU Guang. Improved Goldstein SAR Interferogram filter based on empirical mode decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2): 399-403.
    林文晶, 张榆锋, 章克信, 等. 总体经验模态细分法提取血流超声多普勒信号的研究[J]. 电子学报, 2014, 42(7): 1424-1428.
    LIN Wenjing, ZHANG Yufeng, ZHANG Kexin, et al. Extraction of Doppler ultrasound blood signals using the delicate separation method based on the EEMD algorithm [J]. Acta Electronica Sinica, 2014, 42(7): 1424-1428.
    余炜, 周娅, 马晶晶, 等. 基于EMD和LVQ的信号特征提取及分类方法[J]. 数据采集与处理, 2014, 29(5): 683-688.
    YU Wei, ZHOU Ya, MA Jingjing, et al. Signal feature extraction and classification method based on EMD and LVQ neural network[J]. Journal of Data Acquisition and Processing, 2014, 29(5): 683-688.
    王玉静, 康守强, 张云, 等. 基于集合经验模态分解敏感固有模态函数选择算法的滚动轴承状态识别方法[J]. 电子与信息学报, 2014, 36(3): 595-600. doi: 10.3724/SP.J.1146.2013. 00434.
    WANG Yujing, KANG Shouqiang, ZHANG Yun, et al. Condition recognition method of rolling bearing based on ensemble empirical mode decomposition sensitive intrinsic mode function selection algorithm[J]. Journal of Electronics Information Technology, 2014, 36(3): 595-600. doi: 10.3724/SP.J.1146.2013.00434.
    肖春生, 察豪, 周沫. 基于EMD的海杂波特性与目标检测[J]. 雷达与对抗, 2011, 31(2): 1-4.
    XIAO Chunsheng, CHA Hao, and ZHOU Mo. The EMD- based sea clutter characteristics and target detection[J]. Radar ECM, 2011, 31(2): 1-4.
    王幅友, 刘刚, 袁赣南. 基于EMD算法的海杂波信号去噪[J]. 雷达科学与技术, 2010, 8(2): 177-182.
    WANG Fuyou, LIU Gang, and YUAN Gannan. EMD-based sea clutter signal denoising[J]. Radar Science and Technology, 2010, 8(2): 177-182.
    关键, 张建. 基于固有模态能量熵的微弱目标检测算法[J]. 电子与信息学报, 2011, 33(10): 2494-2499. doi: 10.3724/SP.J. 1146.2011.00147.
    GUAN Jian and ZHANG Jian. Weak target detection based on intrinsic mode energy entropy[J]. Journal of Electronics Information Technology, 2011, 33(10): 2494-2499. doi: 10.3724/SP.J.1146.2011.00147.
    刘宁波, 关键, 宋杰, 等. 海杂波频谱的多重分形特性分析[J]. 中国科学:信息科学, 2013, 43(6): 768-782.
    LIU Ningbo, GUAN Jian, SONG Jie, et al. Multifractal property of sea clutter frequency spectrum[J]. Scientia Sinica Informationis, 2013, 43(6): 768-783.
    HU Jing, TUNG Wenwen, and GAO Jianbo. Detection of low observable targets within sea clutter by structure function based multifractal analysis[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(1): 136-143.
    HANSEN V G. Nonparametric radar extraction using a generalized sign test[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(5): 942-950.
    SALMASI M and MODARRES-HASHEMI M. Design and analysis of fractal detector for high resolution radars[J]. Chaos, Solitons Fractals, 2009, 40(5): 2133-2145.
  • 加载中
计量
  • 文章访问数:  1584
  • HTML全文浏览量:  219
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-15
  • 修回日期:  2016-01-29
  • 刊出日期:  2016-05-19

目录

    /

    返回文章
    返回