高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实时超像素跟踪算法

王暐 王春平 付强 徐艳

王暐, 王春平, 付强, 徐艳. 实时超像素跟踪算法[J]. 电子与信息学报, 2016, 38(3): 571-577. doi: 10.11999/JEIT150705
引用本文: 王暐, 王春平, 付强, 徐艳. 实时超像素跟踪算法[J]. 电子与信息学报, 2016, 38(3): 571-577. doi: 10.11999/JEIT150705
WANG Wei, WANG Chunping, FU Qiang, XU Yan. Real-time Superpixels Based Tracking Method[J]. Journal of Electronics & Information Technology, 2016, 38(3): 571-577. doi: 10.11999/JEIT150705
Citation: WANG Wei, WANG Chunping, FU Qiang, XU Yan. Real-time Superpixels Based Tracking Method[J]. Journal of Electronics & Information Technology, 2016, 38(3): 571-577. doi: 10.11999/JEIT150705

实时超像素跟踪算法

doi: 10.11999/JEIT150705
基金项目: 

国家自然科学基金(61141009)

Real-time Superpixels Based Tracking Method

Funds: 

The National Natural Science Foundation of China (61141009)

  • 摘要: 建立有效的目标表观模型是视觉跟踪算法的关键。该文采用中层次视觉线索(超像素)对目标表观进行建模,提出一种实时超像素跟踪(RSPT)算法。算法采用K近邻(KNN)方法从超像素特征集合中学习目标的判别式表观模型;在后续帧中,根据学习到的表观模型计算目标-背景置信图,然后巧妙地采用积分图方法估计目标状态,实现了高速的全局最优估计;最后设计了目标表观模型的在线更新策略,引入遮挡因子对遮挡进行判断。在配置i5处理器的电脑中,所提RSPT算法使用未经优化的Matlab代码以19帧/s的速度实时运行。对若干序列的对比实验表明,所提算法能够在多种复杂环境下稳定跟踪目标,具有良好的鲁棒性。
  • WU Yi, LIM Jongwoo, and YANG M H. Online object tracking: A benchmark[C]. IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1354-1362.
    陈思, 苏松志, 李绍滋, 等. 基于在线半监督boosting的协同训练目标跟踪算法[J]. 电子与信息学报, 2014, 36(4): 888-895. doi: 10.3724/SP.J.1146.2013.00826.
    CHEN Si, SU Songzhi, LI Shaozi, et al. A novel co-training object tracking algorithm based on online semi-supervised boosting[J]. Journal of Electronics Information Technology, 2014, 36(4): 888-895. doi: 10.3724/SP.J.1146.2013.00826.
    AVIDAN S. Ensemble tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 494-501.
    BABENKO B, BELONGIE S, and YANG M H. Visual tracking with online multiple instance learning[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009: 1003-1010.
    ZHANG Kaihua, ZHANG Lei, and YANG M H. Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002-2015.
    FEDERICO P and BIMBO A D. Object tracking by oversampling local features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(12): 2538-2551.
    ROSS D, LIM J, LIN R, et al. Incremental learning for robust visual tracking[J]. International Journal of Compute Vision, 2008, 77(1): 125-141.
    COMANICIU D, RAMESH V, and MEER P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 564-577.
    KWON J and LEE K M. Visual tracking decomposition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1269-1276.
    MEI X and LING H. Robust visual tracking using l1 minimization[C]. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009: 1436-1443.
    薛模根, 朱虹, 袁广林. 基于在线判别式字典学习的鲁棒视觉跟踪[J]. 电子与信息学报, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325.
    XUE Mogen, ZHU Hong, and YUAN Guanglin. Robust visual tracking based on online discrimination dictionary learning [J]. Journal of Electronics Information Technology, 2015, 37(7): 1654-1659. doi: 10.11999/JEIT141325.
    ACHANTA R, SHAJI A, SMITH K, et al. Slic superpixels compared to state-of-the-art superpixel methods [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282.
    YANG Fan, LU Huchuan, and YANG M H. Robust superpixel tracking[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1639-1651.
    REN X and MALIK J. Tracking as repeated figure/ground segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1-8.
    DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1-8.
    VIOLA P and JONES M. Rapid object detection using a boosted cascade of simple features[C]. IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA, 2001: 511-518.
    ADAM A, RIVLIN E, and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]. IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 798-805.
    GRABNER H, GRABNER M, and BISCHOF H. Real-time tracking via on-line boosting[C]. British Machine Vision Conference, Edinburgh, England, 2006: 47-56.
  • 加载中
计量
  • 文章访问数:  1487
  • HTML全文浏览量:  153
  • PDF下载量:  748
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-12-04
  • 刊出日期:  2016-03-19

目录

    /

    返回文章
    返回