高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于特征值分解的中心支持向量机算法

陈素根 吴小俊

陈素根, 吴小俊. 基于特征值分解的中心支持向量机算法[J]. 电子与信息学报, 2016, 38(3): 557-564. doi: 10.11999/JEIT150693
引用本文: 陈素根, 吴小俊. 基于特征值分解的中心支持向量机算法[J]. 电子与信息学报, 2016, 38(3): 557-564. doi: 10.11999/JEIT150693
CHEN Sugen, WU Xiaojun. Eigenvalue Proximal Support Vector Machine Algorithm Based on Eigenvalue Decoposition[J]. Journal of Electronics & Information Technology, 2016, 38(3): 557-564. doi: 10.11999/JEIT150693
Citation: CHEN Sugen, WU Xiaojun. Eigenvalue Proximal Support Vector Machine Algorithm Based on Eigenvalue Decoposition[J]. Journal of Electronics & Information Technology, 2016, 38(3): 557-564. doi: 10.11999/JEIT150693

基于特征值分解的中心支持向量机算法

doi: 10.11999/JEIT150693
基金项目: 

国家自然科学基金(61373055, 61103128), 111引智计划项目(B12018),江苏省工业支持计划项目(BE2012031)

Eigenvalue Proximal Support Vector Machine Algorithm Based on Eigenvalue Decoposition

Funds: 

The National Natural Science Foundation of China (61373055, 61103128), 111 Project of Chinese Ministry of Education (B12018), Industrial Support Program of Jiangsu Province (BE2012031)

  • 摘要: 针对广义特征值中心支持向量机(GEPSVM)训练和决策过程不一致问题,该文提出一类改进的基于特征值分解的中心支持向量机,简称为IGEPSVM。首先针对二分类问题提出了基于特征值分解的中心支持向量机,然后基于一类对余类策略将其推广到多类分类问题。将GEPSVM求解广义特征值问题转化为求解标准特征值问题,降低了计算复杂度。引入了一个新的参数,可以调节模型的性能,提高了GEPSVM的分类精度。提出了基于IGEPSVM的多类分类算法。实验结果表明,与GEPSVM算法相比较,IGEPSVM不仅提高了分类精度,而且缩短了训练时间。
  • CORTES C and VAPNIK V N. Support vector machine[J]. Machine Learning, 1995, 20(3): 273-297.
    OSUNA E, FREUND R, and GIROSI F. Training support vector machines: an application to face detection[C]. Proceedings of Computer Vision and Pattern Recognition, San Juan, 1997: 130-136.
    ISA D, LEE L H, KALLIMANI V P, et al. Text document preprocessing with the Bayes formula for classification using the support vector machine[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(9): 1264-1272.
    BOSER B, GUYON I, and VAPNIK V N. A training algorithm for optimal margin classifiers[C]. Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, New York, 1992: 144-152.
    OSUNA E, FREUND R, and GIROSI F. An improved training algorithm for support vector machines[C]. Proceedings of IEEE Workshop on Neural Networks for Signal Processing, New York, USA, 1997: 276-285.
    PLATT J. Fast Training of Support Vector Machines Using Sequential Minimal Optimization[M]. Advances in Kernel Methods: Support Vector Machines, Cambridge, MA, MIT Press, 1998: 41-65.
    张战成, 王士同, 邓赵红, 等. 支持向量机的一种快速分类算法[J]. 电子与信息学报, 2011, 33(9): 2181-2186.
    ZHANG Zhancheng, WANG Shitong, DENG Zhaohong, et al. Fast decision using SVM for incoming samples[J]. Journal of Electronics Information Technology, 2011, 33(9): 2181-2186.
    MANGASARIAN O L and WILD E W. Multisurface proximal support vector machine classification via generalized eigenvalues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(1): 69-74.
    JAYADEVA, KHEMCHANDAI R, and CHANDRA S. Twin support vector machine classification for pattern classification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
    SHAO Y H, ZHANG C H, WANGX B, et al. Improvements on twin support vector machines[J]. IEEE Transactions on Neural Networks, 2011, 22(6): 962-968.
    PENG X J. TPMSVM: A novel twin parametric-margin support vector machine for pattern recognition[J]. Pattern Recognition, 2011, 44(10): 2678-2692.
    QI Z Q, TIAN Y J, and SHI Y. Robust twin support vector machine for pattern classification[J]. Pattern Recognition, 2013, 46(1): 305-316.
    SHAO Y H, DENG N Y, and CHEN W J. A proximal classifier with consistency[J]. Knowledge-Based Systems, 2013, 49: 171-178.
    Tian Y J, Qi Z Q, Ju X C, et al. Nonparallel support vector machines for pattern classification[J]. IEEE Transactions on Cybernetics, 2014, 44(7): 1067-1079.
    DING S F, HUA X P, and YU J Z. An overview on nonparallel hyperplane support vector machine algorithms[J]. Neural Computing and Applications, 2014, 25(5): 975-982.
    王娜, 李霞. 基于类加权的双支持向量机[J]. 电子与信息学报, 2007, 29(4): 859-862.
    WANG Na and LI Xia. A new dual support vector machine based on class-weighted[J]. Journal of Electronics Information Technology, 2007, 29(4): 859-862.
    BOTTOU L, CORTES C, DENKER J S, et al. Comparison of classifier methods: a case study in handwritten digit recognition[C]. Proceedings of IEEE International Conference on Pattern Recognition, Paris, 1994: 77-82.
    KRE?EL U. Pairwise Classification and Support Vector Machines[M]. Advances in Kernel Methods-Support Vector Learning, Cambridge, MA, MIT Press, 1999: 255-268.
    CRAMMER K and SINGER Y. On the learn ability and design of output codes for multi-class problems[J]. Machine Learning, 2002, 47(2/3): 201-233.
    XU Y T, GUO R, and WANG L S. A twin multi-class classification support vector machine[J]. Cognitive Computation, 2013, 5(4): 580-588.
    NASIRI J A, CHARKARI N M, and JALILI S. Least squares twin multi-class classification support vector machine[J]. Pattern Recognition, 2015, 48(3): 984-992.
    PARLETT B. The Symmetric Eigenvalue Problem[M]. Upper Saddle River, NJ, USA, SIAM Press, 1998: 61-80.
    BLAKE C L and MERZ C J. UCI repository of machine learning databases[R]. Irvine, CA: Department of Information and Computers Science, University of California, 1998.
    CHANG C and LIN C. LIBSVM: A library for support vector machine[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.
  • 加载中
计量
  • 文章访问数:  1387
  • HTML全文浏览量:  140
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-09-17
  • 刊出日期:  2016-03-19

目录

    /

    返回文章
    返回