高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种幅度信息辅助多伯努利滤波算法

袁常顺 王俊 孙进平 孙忠胜 毕严先

袁常顺, 王俊, 孙进平, 孙忠胜, 毕严先. 一种幅度信息辅助多伯努利滤波算法[J]. 电子与信息学报, 2016, 38(2): 464-471. doi: 10.11999/JEIT150683
引用本文: 袁常顺, 王俊, 孙进平, 孙忠胜, 毕严先. 一种幅度信息辅助多伯努利滤波算法[J]. 电子与信息学报, 2016, 38(2): 464-471. doi: 10.11999/JEIT150683
YUAN Changshun, WANG Jun, SUN Jinping, SUN Zhongsheng, BI Yanxian. A Multi-Bernoulli Filtering Algorithm Using Amplitude Information[J]. Journal of Electronics & Information Technology, 2016, 38(2): 464-471. doi: 10.11999/JEIT150683
Citation: YUAN Changshun, WANG Jun, SUN Jinping, SUN Zhongsheng, BI Yanxian. A Multi-Bernoulli Filtering Algorithm Using Amplitude Information[J]. Journal of Electronics & Information Technology, 2016, 38(2): 464-471. doi: 10.11999/JEIT150683

一种幅度信息辅助多伯努利滤波算法

doi: 10.11999/JEIT150683
基金项目: 

国家自然科学基金(61171122, 61201318, 61471019, 61501011),中央高校基本科研业务费专项资金(YWF-15-GJSYS- 068)

A Multi-Bernoulli Filtering Algorithm Using Amplitude Information

Funds: 

The National Natural Science Foundation of China (61171122, 61201318, 61471019, 61501011), The Fundamental Research Funds for the Central Universities (YWF- 15-GJSYS-068)

  • 摘要: 在许多多目标跟踪场景中,目标返回的幅度通常强于虚警杂波返回的幅度。通过建立更加准确的包含幅度信息的目标和虚警杂波似然函数,可提高多目标估计精度。该文提出一种基于随机有限集的幅度信息辅助多伯努利滤波(Amplitude Information Assistant Multi-Bernoulli Filter, AIA-MBerF)算法。该算法通过建立幅度似然函数将幅度信息引入到多伯努利滤波的更新过程中,并给出针对线性和非线性模型的高斯混合(Gaussian Mixture, GM)和序贯蒙特卡洛(Sequential Monte Carlo, SMC)实现方法。仿真结果表明,该滤波算法相比于传统多伯努利滤波(Multi-Bernoulli Filter, MBerF)无论GM还是SMC实现都可获得更加准确稳定的目标数和对应的目标状态估计。
  • MAHLER R. Statistical Multisource-Multitarget Information Fusion[M]. Norwood: Artech House, 2007: 565-682.
    LERRO D and BAR-SHALOM Y. Automated tracking with target amplitude information[C]. American Control Conference, USA, San Diego, 1990: 2875-2880.
    VAN KEUK G. Multihypothesis tracking using incoherent signal-strength information[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(3): 1164-1170.
    LA Scala B F. Viterbi data association tracking using amplitude information[C]. Proceedings of the 7th International Conference on Information Fusion, Stockholm, Sweden, 2004: 698-705.
    MAHLER R. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178.
    MAHLER R. PHD filters of higher order in target number[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543.
    VO B N and MA W. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 40914104.
    VO B T, VO B N, and CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567.
    胡子军, 张林让, 张鹏, 等. 基于高斯混合带势概率假设密度滤波器的未知杂波下多机动目标跟踪算法[J]. 电子与信息学报, 2015, 37(1): 116-122.doi: 10.11999/JEIT140218.
    HU Zijun, ZHANG Linrang, ZHANG Peng, et al. Gaussian mixture cardinalized probability hypothesis density filter for multiple maneuvering target tracking under unknown clutter situation[J]. Journal of Electronics Information Technology, 2015, 37(1): 116-122. doi: 10.11999/JEIT140218.
    占荣辉, 刘盛启, 欧建平, 等. 基于序贯蒙特卡罗概率假设密度滤波的多目标检测前跟踪改进算法[J]. 电子与信息学报, 2014, 36(11): 2593-2599. doi: 10.3724/SP.J.1146.2013.02029.
    ZHAN Ronghui, LIU Shengqi, OU Jianping, et al. Improved multitarget track before detect algorithm using the sequential monte carlo probability hypothesis density filter[J]. Journal of Electronics Information Technology, 2014, 36(11): 2593-2599. doi: 10.3724/SP.J.1146.2013.02029.
    CLARK D and BELL J. Convergence results for the particle PHD filter[J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2652-2661.
    CLARK D and VO B T. Convergence analysis of the Gaussian mixture PHD filter[J]. IEEE Transactions on Signal Processing, 2007, 55(4): 1204-1212.
    CLARK D, RISTIC B, VO BN, et al. Bayesian multi-object filtering with amplitude feature likelihood for unknown object SNR[J]. IEEE Transactions on Signal Processing, 2010, 58(1): 26-37.
    GOSTAR A K, HOSEINNEZHAD R, and BAB- HADIASHAR A. Sensor control for multi-object tracking using labeled multi-Bernoulli filter[C]. The 17th International Conference on Information Fusion, Salamanca, 2014: 1-8.
    CHONG N, WONG S, NORDHOLM S, et al. Multiple sound source tracking and identification via degenerate unmixing estimation technique and cardinality balanced multi-target multi-bernoulli filter (DUET-CBMeMBer) with track management[C]. Asia-Pacific Signal and Information Processing Association, Siem Reap, 2014: 1-5.
    KIM D Y and JEON M. Robust multi-Bernoulli filtering for visual tracking[C]. International Conference on Control, Automation and Information Sciences (ICCAIS). Gwangju, 2014: 47-51.
    胡子军, 张林让, 房嘉奇. 多站无源雷达多起伏目标检测前跟踪算法[J]. 电子与信息学报, 2015, 37(3): 651-657. doi: 10.11999/JEIT140466.
    HU Zijun, ZHANG Linrang, and FANG Jiaqi. A Track- before-detect algorithm for tracking multiple fluctuating targets using passive multistatic radar[J]. Journal of Electronics Information Technology, 2015, 37(3): 651-657. doi:10.11999/ JEIT140466.
    SKOLNIK M I. Introduction to Radar[M]. New York: McGraw-Hill, 2002: 148-256.
    VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409-423.
    LIAN F, LI C, HAN C, et al. Convergence analysis for the SMC-MeMBer and SMC-CBMeMBer filters[J]. Journal of Applied Mathematics, 2012, 2012: 1-25.
    SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457.
  • 加载中
计量
  • 文章访问数:  1458
  • HTML全文浏览量:  115
  • PDF下载量:  480
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 修回日期:  2015-11-11
  • 刊出日期:  2016-02-19

目录

    /

    返回文章
    返回