高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无信号内干扰的相关延迟键控混沌通信方案

段俊毅 蒋国平 杨华

段俊毅, 蒋国平, 杨华. 无信号内干扰的相关延迟键控混沌通信方案[J]. 电子与信息学报, 2016, 38(3): 681-687. doi: 10.11999/JEIT150660
引用本文: 段俊毅, 蒋国平, 杨华. 无信号内干扰的相关延迟键控混沌通信方案[J]. 电子与信息学报, 2016, 38(3): 681-687. doi: 10.11999/JEIT150660
DUAN Junyi, JIANG Guoping, YANG Hua. Correlation Delay Shift Keying Chaotic Communication Scheme with No Intrasignal Interference[J]. Journal of Electronics & Information Technology, 2016, 38(3): 681-687. doi: 10.11999/JEIT150660
Citation: DUAN Junyi, JIANG Guoping, YANG Hua. Correlation Delay Shift Keying Chaotic Communication Scheme with No Intrasignal Interference[J]. Journal of Electronics & Information Technology, 2016, 38(3): 681-687. doi: 10.11999/JEIT150660

无信号内干扰的相关延迟键控混沌通信方案

doi: 10.11999/JEIT150660
基金项目: 

国家自然科学基金(61373136, 61401226),江苏省研究生创新计划(KYLX_0814)

Correlation Delay Shift Keying Chaotic Communication Scheme with No Intrasignal Interference

Funds: 

The National Natural Science Foundation of China (61373136, 61401226), Innovation Project for Graduate Education of Jiangsu Province (KYLX_0814)

  • 摘要: 该文提出一种名为无信号内干扰相关延迟键控(Correlation-Delay-Shift-Keying with No Intrasignal Interference, CDSK-NII)的新型混沌通信方案。采用重复混沌序列为参考信号,同时利用零和序列确保参考信号与信息信号严格正交,CDSK-NII能够在解调过程中消除信号内干扰。在高斯白噪声信道和Rayleigh衰落信道中分析CDSK-NII的比特误码率。实验结果表明:由于无信号内干扰,CDSK-NII的比特误码率低于CDSK和通用相关延迟键控(GCDSK);随着复帧长度的增加,CDSK-NII的性能将进一步提升,比特误码率低于参考自适应相关延迟键控(RA-CDSK)。
  • 席峰, 陈胜垚, 刘中. 混沌模拟信息转换基于多射法的稀疏信号重构[J]. 电子与信息学报, 2013, 35(3): 608-613. doi: 10.3724/SP.J.1146.2012.00905.
    XI Feng, CHEN Shengyao, and LIU Zhong. Chaotic analog-to-information conversion: sparse signal reconstruction with multiple shooting method[J]. Journal of Electronics Information Technology, 2013, 35(3): 608-613. doi: 10.3724/SP.J.1146.2012.00905.
    陈胜垚, 席峰, 刘中. 多通道混沌调制模拟信息转换[J]. 电子与信息学报, 2014, 36(1): 152-157. doi: 10.3724/SP.J.1146. 2013.00476.
    CHEN Shengyao, XI Feng, and LIU Zhong. Multi-channel chaotic modulation for analog-to-information conversion[J]. Journal of Electronics Information Technology, 2014, 36(1): 152-157. doi: 10.3724/SP.J.1146.2013.00476.
    黄琼丹, 李勇, 卢光跃. 脉间Costas跳频脉内多载波混沌相位编码雷达信号设计与分析[J]. 电子与信息学报, 2015, 37(6): 1483-1489. doi: 10.11999/JEIT140653.
    HUANG Qiongdan, LI Yong, and LU Guangyue. Design and analysis of inter-pulse costas frequency hopping and intra-pulse multi-carrier chaotic phase coded radar signal[J]. Journal of Electronics Information Technology, 2015, 37(6): 1483-1489. doi: 10.11999/JEIT140653.
    DEDIEU H, KENNEDY M P, and HASLER M. Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chuas circuit[J]. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 1993, 40(10): 634-642. doi: ?10.1109/82.246164.
    KOLUMB?N G, VIZVARI B, SCHWARZ W, et al. Differential chaos shift keying: a robust coding for chaos communications[C]. Proceedings of the 4th International Workshop on Nonlinear Dynamics of Electronics Systems, Seville, 1996: 87-92.
    WANG Lin, MIN Xin, and CHEN Guanrong. Performance of FM-DCSK UWB system based on chaotic pulse cluster signals[J]. IEEE Transactions on Circuits and SystemsI: Regular Papers, 2011, 58(9): 2259-2268. doi: 10.1109/TCSI. 2011.2112592.
    YANG Hua, JIANG Guoping, and DUAN Junyi. Phase-separated DCSK: a simple delay-component-free solution for chaotic communications[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2014, 61(12): 967-971. doi: 10.1109/TCSII.2014.2356914.
    SUSHCHIK M, TSIMRING L S, and Volkovskii A R. Performance analysis of correlation-based communication schemes utilizing chaos[J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2000, 47(12): 1684-1691. doi: 10.1109/81.899920.
    TAM W M, LAU F C M, and TSE C K. Generalized correlation-delay-shift-keying scheme for noncoherent chaos-based communication systems[J]. IEEE Transactions on Circuits and SystemsI: Regular Papers, 2006, 53(3): 712-721. doi: ?10.1109/TCSI.2005.858323.
    DUAN Junyi, JIANG Guoping, and YANG Hua. Reference-adaptive CDSK: an enhanced version of correlation delay shift keying[J]. IEEE Transactions on Circuits and System-II: Express Briefs, 2015, 62(1): 90-94. doi: 10.1109/ TCSII.2014.2362691.
    DING Q and WANG J N. Design of frequency-modulated correlation delay shift keying chaotic communication system[J]. IET Communications, 2011, 5(7): 901-905. doi: 10.1049/iet-com.2010.0643.
    LEE Junhyun, AN Changyoung, KIM Bongjun, et al. Analysis of boss map according to delay time in CDSK system and proposed chaos system[C]. Proceedings of IEEE International Conference on Consumer Electronics, Las Vegas, 2015: 521-524. doi: 10.1109/ICCE.2015.7066509.
    DUAN Junyi, JIANG Guoping, and YANG Hua. Performance of a SIMO-CDSK system over rayleigh fading channels[J]. Mathematical Problems in Engineering, 2013: 1-7. doi: 10.1155/2013/532653.
    LEE Junhyun and RYU Heunggyoon. Diversity method in the chaos CDSK communication system[C]. Proceedings of 16th International Conference on Advanced Communication Technology, Pyeongchang, 2014: 1184-1187. doi: 10.1109/ ICACT.2014.6779145.
    GEISEL T and FAIREN V. Statistical properties of chaos in Chebyshev maps[J]. Physics Letters A, 1984, 105A(6): 263-266. doi: 10.1016/0375-9601(84)90993-9.
    CHERNOV N I. Limit theorems and Markov approximations for chaotic dynamical systems[J]. Probability Theory and Related Fields, 1995, 101(3): 321-362. doi: 10.1007/ F01200500.
  • 加载中
计量
  • 文章访问数:  1452
  • HTML全文浏览量:  185
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-02
  • 修回日期:  2015-11-17
  • 刊出日期:  2016-03-19

目录

    /

    返回文章
    返回