高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

L波段雷达电离层高速运动目标ISAR成像补偿方法

黄小红 文贡坚

黄小红, 文贡坚. L波段雷达电离层高速运动目标ISAR成像补偿方法[J]. 电子与信息学报, 2015, 37(12): 2971-2976. doi: 10.11999/JEIT150646
引用本文: 黄小红, 文贡坚. L波段雷达电离层高速运动目标ISAR成像补偿方法[J]. 电子与信息学报, 2015, 37(12): 2971-2976. doi: 10.11999/JEIT150646
Huang Xiao-hong, Wen Gong-jian. Compensating Method of L-band Radar ISAR Imaging for Ionosphereic Target with High-velocity[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2971-2976. doi: 10.11999/JEIT150646
Citation: Huang Xiao-hong, Wen Gong-jian. Compensating Method of L-band Radar ISAR Imaging for Ionosphereic Target with High-velocity[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2971-2976. doi: 10.11999/JEIT150646

L波段雷达电离层高速运动目标ISAR成像补偿方法

doi: 10.11999/JEIT150646
基金项目: 

国家自然科学基金(61002025)

Compensating Method of L-band Radar ISAR Imaging for Ionosphereic Target with High-velocity

Funds: 

The National Natural Science Foundation of China (61002025)

  • 摘要: 目标高速运动和电离层效应都会对低频段宽带线性调频雷达信号的相位产生调制现象,进而降低逆合成孔径雷达(ISAR)成像分辨率。为得到清晰的目标ISAR图像,需有效消除这两者对目标回波的影响。该文首先建立电离层高速运动目标回波的信号模型,再根据目标回波为高阶多项式相位信号的特点,提出基于离散多项式变换的高阶相位估计算法,利用高阶相位估计值进行回波信号相位调制分量补偿,实现ISAR成像的自聚焦。仿真实验表明,该算法可以准确估计回波信号高阶相位参数,提高ISAR成像质量。
  • 许志伟, 张磊, 邢孟道. 基于特征配准的ISAR图像方位定标方法[J]. 电子与信息学报, 2014, 36(9): 2173-2179.
    Xu Zhi-wei, Zhang Lei, and Xing Meng-dao. A novel cross-rang scaling algorithm for ISAR images based on feature registration[J]. Journal of Electronics Information Technology, 2014, 36(9): 2173-2179.
    徐少坤, 刘记红, 袁翔宇, 等. 基于ISAR图像的中段目标二维几何特征反演方法[J]. 电子与信息学报, 2015, 37(2): 339-345.
    Xu Shao-kun, Liu Ji-hong, Yuan Xiang-yu, et al.. Two dimensional geomtric feature inversion method for midcouse target based on ISAR image[J]. Journal of Electronics Information Technology, 2015, 37(2): 339-345.
    俞翔, 朱岱寅, 张劲东, 等. 基于设计结构化Gram矩阵的ISAR运动补偿方法[J]. 电子学报, 2014, 42(3): 452-461.
    Yu Xiang, Zhu Dai-yin, Zhang Jing-dong, et al.. A motion compensation algorithm based on the designing structured gram matric[J]. Acta Electronica Sinica, 2014, 42(3): 452-461.
    Wang Y and Jiang Y C. Inverse synthetic aperture radar imaging of three-dimensional rotation target based on two-order match fourier transform[J]. IET Signal Processing, 2012, 6(2): 159-169.
    Wang J F and Liu X Z. Improved global range alignment for ISAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1070-1075.
    刘波, 李道京, 李烈辰. 基于压缩感知的干涉逆合成孔径雷达成像研究[J]. 电波科学学报, 2014, 29(1): 19-25.
    Liu Bo, Li Dao-jing, and Li Lie-chen. Moving target InSAR imaging and location based on compressed sensing[J]. Chinese Journal of Radio Science, 2014, 29(1): 19-25.
    黄小红, 邱兆坤, 王伟. 目标高速运动对宽带一维距离像的影响及补偿方法研究[J]. 信号处理, 2002, 18(6): 487-490.
    Huang Xiao-hong, Qiu Zhao-kun, and Wang Wei. Research on effect of wideband range profile imaging and compensating method for target moving with high velocity[J]. Signal Processing, 2002, 18(6): 487-490.
    Xing M D, Wu R B, and Bao Z. High resolution ISAR imaging of high speed moving targets[J]. IEE Proceedings- Radar, Sonar and Navigation, 2005, 152(2): 58-67.
    刘红超, 纠博, 刘宏伟, 等. 一种匀加速空间目标高分辨距离像补偿算法[J]. 西安电子科技大学学报, 2012, 39(4): 81-86.
    Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. High resolution range profile compensation algorithm for the space target with uniform acceleration algorithm[J]. Journal of Xidian University, 2012, 39(4): 81-86.
    唐辉, 胡卫东, 郁文贤. 电离层对L波段空间目标ISAR成像影响的建模与仿真[J]. 电波科学学报, 2007, 22(1): 143-147.
    Tang Hui, Hu Wei-dong, and Yu Wen-xian. Modeling and simulation of ionospheric effects on L-band ISAR imaging of space objects[J]. Chinese Journal of Radio Science, 2007, 22(1): 143-147.
    李亮, 洪峻, 明峰, 等. 电离层时空变化对中高轨SAR成像质量的影响分析[J]. 电子与信息学报, 2014, 36(4): 915-922.
    Li Liang, Hong Jun, Ming Feng, et al.. Study on ionospheric effects induced by spatio-temporal variability on medium- earth-orbit SAR imaging quality[J]. Journal of Electronics Information Technology, 2014, 36(4): 915-922.
    Freeman A and Saatchi S S. On the detection of faraday rotation in linearly polarized L-band SAR backscatter signatures[J]. IEEE Transacions on Geoscience and Remote Sensing, 2004, 42(8): 1607-1616.
    Chen Jie, Li Zhou, Liu Wei, et al.. Image formation algorithm for topside ionosphere sounding with spaceborne HF-SAR system[C]. IEEE IGARSS Conference, Boston, Massachusetts, USA, 2008: II549-552.
    邢孟道, 保铮. 电离层电波传播相位污染校正[J]. 电波科学学报, 2002, 17(2): 129-133.
    Xing Meng-dao and Bao Zheng. Phase perturbation correction in ionospheric electromagnetic wave propagation [J]. Chinese Journal of Radio Science, 2002, 17(2): 129-133.
    Nicoll J B and Meyer F J. Mapping the ionosphere using L-band SAR data[C]. IEEE IGARSS Conference, Boston, Massachusetts, USA, 2008: II537-540.
    赵宁, 周芳, 王振, 等. P 波段雷达成像电离层效应的地面观测与校正[J]. 雷达学报, 2014, 3(1): 45-51.
    Zhao Ning, Zhou Fang, Wang Zhen, et al.. Ground observation and correction of P-band radar imaging ionospheric effects[J]. Journal of Radars, 2014, 3(1): 45-51.
    Peleg S and Friedlander B. Multicomponent signal analysis using the poloynomial-phase transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 378-386.
    Barbarossa S, Scaglione A, and Georgios B G. Product high-order ambiguity function for multicomponent polynomial-phase signal modeling[J]. IEEE Transactions on Signal Processing, 1998, 46(3): 691-708.
    Peleg S and Friedlander Benjamin. The discrete polynomial- phase transform[J]. IEEE Transactions on Signal Processing, 1995, 43(8): 1901-1914.
  • 加载中
计量
  • 文章访问数:  1280
  • HTML全文浏览量:  167
  • PDF下载量:  658
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-01
  • 修回日期:  2015-09-16
  • 刊出日期:  2015-12-19

目录

    /

    返回文章
    返回