高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非负矩阵分解的彩色图像质量评价方法

徐海勇 郁梅 骆挺 吕亚奇 蒋刚毅

徐海勇, 郁梅, 骆挺, 吕亚奇, 蒋刚毅. 基于非负矩阵分解的彩色图像质量评价方法[J]. 电子与信息学报, 2016, 38(3): 578-585. doi: 10.11999/JEIT150610
引用本文: 徐海勇, 郁梅, 骆挺, 吕亚奇, 蒋刚毅. 基于非负矩阵分解的彩色图像质量评价方法[J]. 电子与信息学报, 2016, 38(3): 578-585. doi: 10.11999/JEIT150610
XU Haiyong, YU Mei, LUO Ting, Lü Yaqi, JIANG Gangyi. A Color Image Quality Assessment Method Based onNon-negative Matrix Factorization[J]. Journal of Electronics & Information Technology, 2016, 38(3): 578-585. doi: 10.11999/JEIT150610
Citation: XU Haiyong, YU Mei, LUO Ting, Lü Yaqi, JIANG Gangyi. A Color Image Quality Assessment Method Based onNon-negative Matrix Factorization[J]. Journal of Electronics & Information Technology, 2016, 38(3): 578-585. doi: 10.11999/JEIT150610

基于非负矩阵分解的彩色图像质量评价方法

doi: 10.11999/JEIT150610
基金项目: 

国家自然科学基金 (U1301257, 61171163, 61271270, 61271021, 61311140262, 61501270),浙江省自然科学基金(LY14F010004, LY15F010005),浙江省重中之重学科开放基金

A Color Image Quality Assessment Method Based onNon-negative Matrix Factorization

Funds: 

The National Natural Science Foundation of China (U1301257, 61171163, 61271270, 61271021, 61311140262, 61501270), Zhejiang Provincial Natural Science Foundation of China (LY14F010004, LY15F010005), Open Fund of Zhejiang Provincial Key Academic Project (first level)

  • 摘要: 针对稀疏表示的图像质量评价模型都基于灰度图像,缺少颜色信息,该文提出一种基于非负矩阵分解(NMF)的全参考彩色图像质量评价方法。首先,从自然彩色图像中随机采样,得到训练样本,利用非负矩阵分解,训练得到特征基矩阵,并经过Schmidt正交化,构建特征提取矩阵;其次,根据视觉显著性模型,利用最大视觉显著性和显著性差值两步骤选取视觉重要区域;最后,利用特征提取矩阵,得到低维的特征向量,并最终得到彩色图像质量评价值。实验结果表明,该文方法在LIVE, CSIQ和TID2008 3个图像质量评价库上有很好的表现。3个图像库的平均结果显示,该文方法的综合表现优于所有对比方法。这表明该文方法与主观感知有更好的关联度。
  • 蒋刚毅, 黄大江, 王旭, 等. 图像质量评价方法研究进展[J]. 电子与信息学报, 2010, 32(1): 219-226. doi: 10.3724/SP.J. 1146.2009.00091.
    JIANG Gangyi, HUANG Dajiang, WANG Xu, et al. Overview on image quality assessment methods[J]. Journal of Electronics Information Technology, 2010, 32(1): 219-226. doi: 10.3724/SP.J.1146.2009.00091.
    ZHANG M, MURAMASTSU C, ZHOU X, et al. Blind image quality assessment using the joint statistics of generalized local binary pattern[J]. IEEE Signal Processing Letters, 2015, 22(2): 207-210.
    宋洋, 郁梅, 蒋刚毅, 等. 基于人眼视觉特性的三维小波变换视频质量评价方法[J]. 光电子激光, 2014, 25(10): 1983-1988.
    SONG Yang, YU Mei, JIANG Gangyi, et al. 3D discrete wavelet transform based video quality metric combining with human visual characteristics[J]. Journal of OptoelectronicsLaser, 2014, 25(10): 1983-1988.
    MANTIUK R K, TOMASZEWSKA A, and MANTIUK R. Comparison of four subjective methods for image quality assessment[J]. Computer Graphics Forum, 2012, 31(8): 2478-2491.
    ZHANG L, SHEN Y, and LI H. VSI: a visual saliency-induced index for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2014, 23(10): 4270-4281.
    HONG R, PAN J, Hao S, et al. Image quality assessment based on matching pursuit[J]. Information Sciences, 2014, 273: 196-211.
    陈勇, 樊强, 帅锋. 基于小波分析的图像稀疏保真度评价[J]. 电子与信息学报, 2015, 37(9): 2055-2061. doi: 10.11999/ JEIT150173.
    CHEN Yong, FAN Qiang, and SHUAI Feng. Sparse image fidelity evaluation based on wavelet analysis[J]. Journal of Electronics Information Technology, 2015, 37(9): 2055-2061. doi: 10.11999/JEIT150173.
    WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    WANG Z, SIMONCELLI E P, and BOVIK A C. Multiscale structural similarity for image quality assessment[C]. IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2003: 1398-1402.
    SAMPAT M P, WANG Z, GUPTA S, et al. Complex wavelet structural similarity: A new image similarity index[J]. IEEE Transactions on Image Processing, 2009, 18(11): 2385-2401.
    WANG Z and LI Q. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1185-1198.
    SHEIKH H R and BOVIK A C. Image information and visual quality[J]. IEEE Transactions on Image Processing, 2006, 15(2): 430-444.
    CHANDLER D M and HEMAMI S S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284-2298.
    LIU A, LIN W, and NARWARIA M. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1500-1512.
    ZHANG L, ZHANG L, MOU X Q, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386.
    GUHA T, NEZHADARYA E, and WARD R K. Sparse representation-based image quality assessment[J]. Signal Processing: Image Communication, 2014, 29(10): 1138-1148.
    MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]. Proceedings of. Eighth IEEE International
    Conference on Computer Vision, Vancouver, Canada, 2001, 2: 416-423.
    LEE D D and SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
    ZHANG L, GU Z, and LI H. SDSP: A novel saliency detection method by combining simple priors[C]. IEEE International Conference on Image Processing, Australia, 2013: 171-175.
    PONOMARENKO N, LUKIN V, ZELENSKY A, et al. TID2008A database for evaluation of full-reference visual quality assessment metrics[J]. Advances of Modern Radioelectronics, 2009, 10: 30-45.
    SHEIKH H R, BOVIK A C, and DE VECIANA G. An information fidelity criterion for image quality assessment using natural scene statistics[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2117-2128.
    LARSON E C and CHANDLER D M. Most apparent distortion: full-reference image quality assessment and the role of strategy[J]. Journal of Electronic Imaging, 2010, 19(1): 011006.
  • 加载中
计量
  • 文章访问数:  1377
  • HTML全文浏览量:  120
  • PDF下载量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-25
  • 修回日期:  2015-11-09
  • 刊出日期:  2016-03-19

目录

    /

    返回文章
    返回