高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种易于初始化的类卷积神经网络视觉跟踪算法

李寰宇 毕笃彦 查宇飞 杨源

李寰宇, 毕笃彦, 查宇飞, 杨源. 一种易于初始化的类卷积神经网络视觉跟踪算法[J]. 电子与信息学报, 2016, 38(1): 1-7. doi: 10.11999/JEIT150600
引用本文: 李寰宇, 毕笃彦, 查宇飞, 杨源. 一种易于初始化的类卷积神经网络视觉跟踪算法[J]. 电子与信息学报, 2016, 38(1): 1-7. doi: 10.11999/JEIT150600
LI Huanyu, BI Duyan, ZHA Yufei, YANG Yuan. An Easily Initialized Visual Tracking Algorithm Based on Similar Structure for Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2016, 38(1): 1-7. doi: 10.11999/JEIT150600
Citation: LI Huanyu, BI Duyan, ZHA Yufei, YANG Yuan. An Easily Initialized Visual Tracking Algorithm Based on Similar Structure for Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2016, 38(1): 1-7. doi: 10.11999/JEIT150600

一种易于初始化的类卷积神经网络视觉跟踪算法

doi: 10.11999/JEIT150600
基金项目: 

国家自然科学基金(61202339, 61472442),航空科学基金(20131996013)

An Easily Initialized Visual Tracking Algorithm Based on Similar Structure for Convolutional Neural Network

Funds: 

The National Natural Science Foundation of China (61202339, 61472442), Aeronautical Science Foundation of China (20131996013)

  • 摘要: 该文针对视觉跟踪中运动目标的鲁棒性跟踪问题,基于主成分分析(PCA)和卷积神经网络(CNN),提出一种易于初始化的类CNN提取深度特征的视觉跟踪算法。该算法首先利用仿射变换对原始图像进行处理,然后对归一化尺寸的图像进行分层PCA学习,将学习得到的PCA特征向量作为CNN结构中的各阶滤波器,完成特征提取网络的初始化,再利用特征提取网络获取目标的深层次表达。最后结合粒子滤波,利用一个简单的逻辑回归分类器通过分类估计实现目标跟踪。结果表明,利用这种易于初始化的CNN提取到的深度特征能够有效地区分目标和背景,具有很好的可区分性,提出的视觉跟踪算法对光照变化、尺度变化、遮挡、旋转和摄像机抖动等都具有良好的适应性,在许多视频序列上表现出了较好的鲁棒性和准确性。
  • LI X, HU W M, and SHEN C H. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 5801-5848.
    侯志强, 黄安奇, 余旺盛, 等. 基于局部分块和模型更新的视觉跟踪算法[J]. 电子与信息学报, 2015, 37(6): 1357-1364. doi: 10.11999/JEIT141134.
    HOU Zhiqiang, HUANG Anqi, YU Wangsheng, et al. Visual object tracking method based on local patch model and model update[J]. Journal of Electronics Information Technology, 2015, 37(6): 1357-1364. doi: 10.11999/ JEIT141134.
    李寰宇, 毕笃彦, 杨源, 等. 基于深度特征表达与学习的视觉跟踪算法研究[J]. 电子与信息学报, 2015, 37(9): 2033-2039. doi: 10.11999/JEIT150031.
    LI Huanyu, BI Duyan, YANG Yuan, et al. Research on visual tracking algorithm based on deep feature expression and learning[J]. Journal of Electronics Information Technology, 2015, 37(9): 2033-2039. doi: 10.11999/JEIT150031.
    HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
    SUN Y, WANG X, and TANG X. Deep learning face representation from predicting 10,000 classes[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 1891-1898.
    ABDEL-HAMID O, MOHAMED A R, JIANG H, et al. Convolutional neural networks for speech recognition[J].ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533-1545.
    OUYANG W, CHU X, and WANG X. Multi-source deep learning for human pose estimation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 2337-2344.
    EVGENY A S, DENIS M T, and SERGE N A. Comparison of regularization methods for imagenet classification with deep convolutional neural networks[J]. AASRI Procedia, 2014, 6(8): 89-94.
    ZHOU S S, CHEN Q C, and WANG X L. Convolutional deep networks for visual data classification[J]. Neural Processing Letters, 2013, 38(11): 17-27.
    WANG N Y and YEUNG D Y. Learning a deep compact image representation for visual tracking[C]. Advances in Neural Information Processing Systems, Lake Tahoe, 2013: 125-137.
    LI H X, LI Y, and FATIH P. Deep track: learning discriminative feature representations by convolutional neural networks for visual tracking[C]. Proceedings of the British Machine Vision Conference, Nottingham, 2014: 110-119.
    BALDI P and HORNIK K. Neural networks and principal component analysis: learning from examples without local minima[J]. Neural Networks, 1989, 2(1): 53-58.
    P?EREZ P, HUE C, and VERMAAK J. Color-based probabilistic tracking[C]. European Conference on Computer Vision, Copenhagen, 2002: 661-675.
    ZHANG K H, ZHANG L, and YANG M H. Real-time compressive tracking[C]. European Conference on Computer Vision, Florence, 2012: 864-877.
    SEVILLA-LARA L and LEARNED-MILLER E. Distribution fields for tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 1910-1917.
    ADAM A, RIVLIN E, and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2006: 798-805.
    ROSS D, LIM Jongwoo, and LIN Rueisung. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1): 125-141.
    COMANICIU D, RAMESH V, and MEER P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577
    SHAUL O, AHARON B H, and DAN L. Locally orderless tracking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1940-1947.
    LIU Baiyang, HUANG Junzhou, and YANG Lin. Robust tracking using local sparse appearance model and K-selection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 1313-1320.
    HARE S, SAFFARI A, and TORR P H S. Struck: Structured output tracking with kernels[C]. Proceedings of IEEE International Conference on Computer Vision, Colorado, 2011: 263-270.
    JUNSEOK K and KYOUNG M. Tracking by sampling trackers[C]. Proceedings of IEEE International Conference on Computer Vision, Colorado, 2011: 1195-1202.
    EVERINGHAM M, VAN GODL L, WILLIAMS C, et al. The pascal Visual Object Classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
  • 加载中
计量
  • 文章访问数:  2127
  • HTML全文浏览量:  162
  • PDF下载量:  4264
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-21
  • 修回日期:  2015-08-28
  • 刊出日期:  2016-01-19

目录

    /

    返回文章
    返回