高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

散射中心的时频像特征研究

郭琨毅 牛童瑶 屈泉酉 盛新庆

郭琨毅, 牛童瑶, 屈泉酉, 盛新庆. 散射中心的时频像特征研究[J]. 电子与信息学报, 2016, 38(2): 478-485. doi: 10.11999/JEIT150598
引用本文: 郭琨毅, 牛童瑶, 屈泉酉, 盛新庆. 散射中心的时频像特征研究[J]. 电子与信息学报, 2016, 38(2): 478-485. doi: 10.11999/JEIT150598
GUO Kunyi, NIU Tongyao, QU Quanyou, SHENG Xinqing. Research on Signatures of Scattering Centers Shown in Time-frequency Representation[J]. Journal of Electronics & Information Technology, 2016, 38(2): 478-485. doi: 10.11999/JEIT150598
Citation: GUO Kunyi, NIU Tongyao, QU Quanyou, SHENG Xinqing. Research on Signatures of Scattering Centers Shown in Time-frequency Representation[J]. Journal of Electronics & Information Technology, 2016, 38(2): 478-485. doi: 10.11999/JEIT150598

散射中心的时频像特征研究

doi: 10.11999/JEIT150598
基金项目: 

国家自然科学基金面上项目(61471041)

Research on Signatures of Scattering Centers Shown in Time-frequency Representation

Funds: 

The National Natural Science Foundation of China (61471041)

  • 摘要: 散射中心是高频区电磁散射的重要特征,其属性特征,如散射幅度、位置,对方位的依赖性对于雷达成像及目标识别具有重要意义。与其它雷达图像相比,时频图像能更完整地反映出散射中心的属性特征,但目前关于不同散射中心的时频像特征研究还不完整。该文首先基于散射中心模型,从理论上分析了各个散射中心时频像的特征,然后通过全波法电磁计算得到了典型结构目标的散射数据,从数值上验证了对时频图像特征的理论分析,最后总结了不同散射中心的时频像特征,此结论有助于从时频像中直观地判断目标的散射中心类型和其对应的物理结构特点,可为基于时频像的雷达目标特征提取与识别提供一定的理论参考。
  • 刘拥军, 葛德彪, 张忠治, 等. 有属性的散射中心理论及应用[J]. 电波科学学报, 2004, 18(5): 559-563.
    LIU Yongjun, GE Debiao, ZHANG Zhongzhi, et al. The theory of attributed scattering centers[J]. Chinese Journal of Radio Science, 2003, 18(5): 559-563.
    张亚军. 基于属性散射中心模型的SAR目标自动识别[D]. [硕士论文], 西安电子科技大学, 2014.
    ZHANG Yajun. Automatic recognition of SAR targets based on attribute scattering center model[D]. [Master dissertation], Xidian University, 2014.
    付耀文, 贾宇平, 庄钊文. 基于一维散射中心匹配的雷达目标识别[J]. 电子学报, 2006, 34(3): 404-407.
    FU Yaowen, JIA Yuping, and ZHUANG Zhaowen. Radar target classification based on one dimensional scattering centers matching[J]. Acta Electronica Sinica, 2006, 34(3): 404-407.
    张肖, 周建江, 汪飞. 基于空域滤波的雷达目标二维散射中心快速提取[J]. 电子与信息学报, 2014, 36(3): 523-528. doi: 10.3724/SP.J.1146.2013.00365.
    ZHANG Xiao, ZHOU Jianjiang, and WANG Fei. Fast extraction of radar target 2D scattering centers based on spatial filtering[J]. Journal of Electronics Information Technology, 2014, 36(3): 523-528. doi: 10.3724/SP.J.1146. 2013.00365.
    杨莉. 一维距离像特性分析及目标识别方法研究[D]. [硕士论文], 哈尔滨工业大学, 2014.
    YANG Li. Study of feature analysis and target recognition for high resolution range profile[D]. [Master dissertation], Harbin Institute of Technology, 2014.
    贺思三. 雷达成像中的非理想散射现象分析[D]. [硕士论文], 国防科学技术大学, 2005.
    HE Sisan. The analysis of nonideal scattering phenomena in radar imaging[D]. [Master dissertation], National University of Defense Technology, 2005.
    CHEN V C. Time-frequency Transforms for Radar Imaging and Signal Analysis[M]. Boston: Artech House, 2001: 23-42.
    周洋. 基于小波变换的非局部图像去噪方法研究[D]. [硕士论文], 西安电子科技大学, 2014.
    ZHOU Yang. Non-local image denoising method based on wavelet transform[D]. [Master dissertation], Xidian University, 2014.
    黄培康, 殷红成, 许小剑, 等. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 2-7.
    HUANG Peikang, YIN Hongcheng, XU Xiaojian, et al. Radar Target Features[M]. Beijing: Publishing House of Electronics Industry, 2005: 2-7.
    POTTER L C and MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 5(1): 79-91.
    POTTER L C, CHING D M, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058-1067.
    GUO Kunyi, LI Qifeng, SHENG Xinqing, et al. Sliding scattering center model for extended streamlined targets[J]. Progress In Electromagnetics Research, 2013, 139(3): 499-516.
    GUO Kunyi and SHENG Xinqing. A precise recognition approach of ballistic missile warhead and decoy[J]. Journal of Electromagnetic Waves and Applications, 2009, 23(14): 1867-1875.
    QU Quanyou, GUO Kunyi, and SHENG Xinqing. An accurate bistatic scattering center model for extended cone- shaped targets[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(10): 5209-5218.
    QU Quanyou, GUO Kunyi, and SHENG Xinqing. Scattering centers induced by creeping waves on streamlined cone- shaped targets in bistatic mode[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 462-465.
    PATHAK P H, BURNSIDE W D, and MARHEFKA R J. A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface[J]. IEEE Transactions on Antennas and Propagation, 1980, 28(5): 631642.
    CARBOR D. Theory of communication[J]. Journal of the Institute of Electrical Engineers, 1946, 93: 429-457.
    刘海燕, 田钢, 石战结. 几种时频分析方法的比较和实际应用[J]. CT理论与应用, 2015, 24(2): 199-208.
    LIU Haiyan, TIAN Gang, and SHI Zhanjie. The comparison of time-frequency analysis methods and their applications [J]. Computerized Tomography Theory and Applications, 2015, 24(2): 199-208.
    周剑雄. 光学区雷达目标三维散射中心重构理论与技术[D]. [博士论文], 国防科学技术大学, 2006.
    ZHOU Jianxiong. The theory and methodology of reconstructing 3D position of scattering centers in the optical region[D]. [Ph.D. dissertation], National University of Defense Technology, 2006.
    SHENG X Q, JIN J M, SONG J M, et al. On the formulation of the hybrid finite-element boundary-integral methods for 3D scattering using multi-level fast multipole algorithm[C]. IEEE Antennas and Propagation Society International Symposium, Atlanta, GA, USA, 1998, Vol.1: 236-239.
  • 加载中
计量
  • 文章访问数:  1626
  • HTML全文浏览量:  126
  • PDF下载量:  627
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-18
  • 修回日期:  2015-11-09
  • 刊出日期:  2016-02-19

目录

    /

    返回文章
    返回