高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于描述长度的Context建模算法

陈建华 王勇 张鸿

陈建华, 王勇, 张鸿. 基于描述长度的Context建模算法[J]. 电子与信息学报, 2016, 38(3): 661-667. doi: 10.11999/JEIT150562
引用本文: 陈建华, 王勇, 张鸿. 基于描述长度的Context建模算法[J]. 电子与信息学报, 2016, 38(3): 661-667. doi: 10.11999/JEIT150562
CHEN Jianhua, WANG Yong, ZHANG Hong. Context Modeling Based on Description Length[J]. Journal of Electronics & Information Technology, 2016, 38(3): 661-667. doi: 10.11999/JEIT150562
Citation: CHEN Jianhua, WANG Yong, ZHANG Hong. Context Modeling Based on Description Length[J]. Journal of Electronics & Information Technology, 2016, 38(3): 661-667. doi: 10.11999/JEIT150562

基于描述长度的Context建模算法

doi: 10.11999/JEIT150562
基金项目: 

国家自然科学基金(61062005)

Context Modeling Based on Description Length

Funds: 

The National Natural Science Foundation of China (61062005)

  • 摘要: 在基于Context建模的熵编码系统中,为了达到预期的压缩性能,需要通过Context量化来缓解由高阶Context模型所引入的Context稀释问题。为此,该文提出一种通过最小化描述长度来实现Context量化(Minimum Description Length Context Quantization, MDLCQ)的算法。该算法使用描述长度作为评价准则,通过动态规划算法来实现单条件的最优Context量化,然后通过循环迭代来实现多条件的Context量化。该算法不仅可以得到多值信源的优化Context量化器,而且可以自适应地确定各个条件的重要性从而确定模型的最佳阶数。实验结果表明:由MDLCQ算法所得到的Context量化器,可以明显改善熵编码系统的压缩性能。
  • 周映虹, 马争鸣. 基于上下文建模的分类排序小波图像编码算法[J]. 电子与信息学报, 2006, 28(12): 2405-2408.
    ZHOU Yinghong and MA Zhengming. Context-based quantization and sorting in wavelet image coding[J]. Journal of Electronics Information Technology, 2006, 28(12): 2405-2408.
    LAKHDHAR K and LEFEDVRE R. Context-based adaptive arithmetic encoding of EAVQ indices[J]. IEEE Transactions on Audio, Speech and Language Processing, 2012, 20(5): 1473-1481.
    CHUAH S, DUMITRESCU S, and WU Xiaolin. optimized predictive image coding with bound[J]. IEEE Transactions on Image Processing, 2013, 22(12): 5271-5281.
    STRUTZ T. Entropy based merging of context models for efficient arithmetic coding[C]. IEEE International Conference on Acoustic, Speech and Signal Processing, Florence, Italy, 2014: 1991-1995.
    KIM S and CHO N I. Hierarchical prediction and context adaptive coding for lossless color image compression[J]. IEEE Transactions on Image Processing, 2014, 23(1): 445-449.
    XU Mantao, WU Xiaolin, and Pasi F. Context quantization by kernel fisher discriminant[J]. IEEE Transactions on Image Processing, 2006, 15(1): 169-177.
    WANG Wei, PENG Shuyan, and CHEN Jianhua. Context quantization based on the ant K-Means clustering algorithm[C]. International Conference on Systems and Informatics, Yantai, 2012: 1573-1576.
    CHEN Min, LIU Chen, and WANG Fuyan. Context quantization under the minimum increment of the adaptive code length[C]. International Conference on Information Technology and Applications, Chengdu, 2013: 9-12.
    WEINBERGER M J, RISSANEN J J, and ARPS R B. Applications of universal context modeling to lossless compression of gray-scale images[J]. IEEE Transactions on Image Processing, 1996, 5(4): 575-586.
    WU Xiaolin, CHOU P A, and XUE Xiaohui. Minimum conditional entropy context quantization[C]. IEEE International Symposium on Information Theory, Sorrento, Italy, 2000: 43.
    CHEN Jianhua. Context modeling based on context quantization with application in wavelet image coding[J]. IEEE Transactions on Image Processing, 2004, 13(1): 26-32.
    CAGNAZZO M, ANTONINI M, and BARLAUD M. Mutual information-based context quantization[J]. Signal Processing: Image Communication, 2010, 25(1): 64-74.
    FORCHHAMMER S, WU Xiaolin, and ANDERSEN J D. Optimal context quantization in lossless compression of image data sequences[J]. IEEE Transactions on Image Processing, 2004, 13(4): 509-517.
    ICHIRO M, HIROFUMI M, JOJI M, et al. Design and evaluation of minimum-rate predictors for lossless image coding[J]. System and Computers in Japan, 2007, 38(5): 90-98.
  • 加载中
计量
  • 文章访问数:  1308
  • HTML全文浏览量:  209
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-11
  • 修回日期:  2015-12-04
  • 刊出日期:  2016-03-19

目录

    /

    返回文章
    返回