高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空域平滑稀疏重构的DOA估计算法

蔡晶晶 宗汝 蔡辉

蔡晶晶, 宗汝, 蔡辉. 基于空域平滑稀疏重构的DOA估计算法[J]. 电子与信息学报, 2016, 38(1): 168-173. doi: 10.11999/JEIT150538
引用本文: 蔡晶晶, 宗汝, 蔡辉. 基于空域平滑稀疏重构的DOA估计算法[J]. 电子与信息学报, 2016, 38(1): 168-173. doi: 10.11999/JEIT150538
DOA Estimation Via Sparse Representation of theSmoothed Array Covariance Matrix[J]. Journal of Electronics & Information Technology, 2016, 38(1): 168-173. doi: 10.11999/JEIT150538
Citation: DOA Estimation Via Sparse Representation of theSmoothed Array Covariance Matrix[J]. Journal of Electronics & Information Technology, 2016, 38(1): 168-173. doi: 10.11999/JEIT150538

基于空域平滑稀疏重构的DOA估计算法

doi: 10.11999/JEIT150538
基金项目: 

国家自然科学基金(61405150, 61271300), 中央高校基本科研业务费专项资金(JB140229)

DOA Estimation Via Sparse Representation of theSmoothed Array Covariance Matrix

Funds: 

The National Natural Science Foundation of China (61405150, 61271300), The Fundamental Research Funds for the Central Universities (JB140229)

  • 摘要: 该文提出一种基于空域平滑稀疏重构的DOA估计算法,利用空域平滑理论对协方差矩阵进行处理,然后通过KR积变换改变其结构,并对变换后的矩阵进行稀疏重构获得角度估计。此外,该文还给出了两种不同的目标函数误差求解方法。从仿真实验可以看出,该算法与传统的基于压缩感知理论的DOA估计算法对比,明显降低了运算量,且对于相干和非相干信号的处理性能均有所提高,在低角度间隔、低信噪比和低采样数条件下优势更为突出。
  • 焦李成, 杨淑媛, 刘芳, 等. 压缩感知回顾与展望[J]. 电子学报, 2011, 39(7): 1651-1662.
    JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Development and prospect of compressive sensing[J]. Acta Electronica Sinica, 2011, 39(7): 1651-1662.
    沈志博, 董春曦, 黄龙, 等. 基于压缩感知的宽频段二维DOA估计算法[J]. 电子与信息学报, 2014, 36(12): 2935-2941. doi: 10.3724/SP.J.1146.2013.01931.
    SHEN Zhibo, DONG Chunxi, HUANG Long, et al. Broadband 2-D DOA estimation based on compressed sensing[J]. Journal of Electronics Information Technology, 2014, 36(12): 2935-2941. doi: 10.3724/SP.J.1146.2013.01931.
    林波, 张增辉, 朱炬波. 基于压缩感知的DOA估计稀疏化模型与性能分析[J]. 电子与信息学报, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146.2013.00149.
    LIN Bo, ZHANG Zenghui, and ZHU Jubo. Sparsity model and performance analysis of DOA estimation with compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(3): 589-594. doi: 10.3724/SP.J.1146. 2013.00149.
    MARCO ROSSI, ALEXANDER M H, and YONINA C E. Spatial compressive sensing for MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 419-430.
    LIU Zhangmeng. Direction-of-arrival estimation with time- varying arrays via Bayesian multitask learning[J]. IEEE Transactions on Vehicular Technology, 2014, 63(8): 3762-3773.
    GU Jianfeng, ZHU Weiping, and SWAMY M N S. Joint 2-D DOA estimation via sparse L-shaped array[J]. IEEE Transactions on Signal Processing, 2015, 63(5): 1171-1182.
    MALIOUTOV D M, CETIN M, and WILLSKY A S. Optimal sparse representations in general overcomplete bases [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Canada, 2004: 793-796.
    TIBSHIRANI R. Regression shrinkage and selection via the LASSO[J]. Journal of the Royal Statistical Society: Series B, 1996, 58(1): 267-288.
    MALIOUTOV D, MUJDAT C, and WILLSKY A. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3010-3022.
    Hyder M and Mahata K. Direction of arrival estimation using a mixed l2.0-norm approximation[J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4646-4655.
    YIN J and CHEN T. Direction of arrival estimation using a sparse representation of array covariance vectors[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4489-4493.
    MA W K, HSIEH T H, and CHI C Y. DOA estimation of quasi-stationary signals with less sensors than sources and unknown spatial noise covariance: A Khatri-Rao subspace approach[J]. IEEE Transactions on Signal Processing, 2010, 58(4): 2168-2180.
    EVANS J E, SUN D F, and JOHNSON J R. Application of advanced signal processing techniques to angle of arrival estimation in ATC navigation and surveillance systems[R]. Massachusetts Inst of Tech Lexington Lincoln Lab, 1982.
    ORERSTEN B, STOICA P, and ROY R. Covariance matching estimation techniques for array signal processing applications[J]. Digital Signal Processing, 1998, 8(3): 185-210.
    LIU Zhangmeng, HUANG Zhitao, and ZHOU Yiyu. Array signal processing via sparsity-inducing representation of the array covariance matrix[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1710-1724.
  • 加载中
计量
  • 文章访问数:  1476
  • HTML全文浏览量:  132
  • PDF下载量:  627
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-07
  • 修回日期:  2015-07-08
  • 刊出日期:  2016-01-19

目录

    /

    返回文章
    返回