高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于邻域结构和高斯混合模型的非刚性点集配准算法

彭磊 李光耀 肖莽 王刚 谢力

彭磊, 李光耀, 肖莽, 王刚, 谢力. 基于邻域结构和高斯混合模型的非刚性点集配准算法[J]. 电子与信息学报, 2016, 38(1): 47-52. doi: 10.11999/JEIT150501
引用本文: 彭磊, 李光耀, 肖莽, 王刚, 谢力. 基于邻域结构和高斯混合模型的非刚性点集配准算法[J]. 电子与信息学报, 2016, 38(1): 47-52. doi: 10.11999/JEIT150501
PENG Lei, LI Guangyao, XIAO Mang, WANG Gang, XIE Li. Non-rigid Point Set Registration Based on Neighbor Structure and Gaussian Mixture Models[J]. Journal of Electronics & Information Technology, 2016, 38(1): 47-52. doi: 10.11999/JEIT150501
Citation: PENG Lei, LI Guangyao, XIAO Mang, WANG Gang, XIE Li. Non-rigid Point Set Registration Based on Neighbor Structure and Gaussian Mixture Models[J]. Journal of Electronics & Information Technology, 2016, 38(1): 47-52. doi: 10.11999/JEIT150501

基于邻域结构和高斯混合模型的非刚性点集配准算法

doi: 10.11999/JEIT150501
基金项目: 

山东省自然科学基金(ZR2015FL005),泰安市科技发展计划(2015GX2016)

Non-rigid Point Set Registration Based on Neighbor Structure and Gaussian Mixture Models

Funds: 

Shandong Provincial Natural Science Foundation, China (ZR2015FL005), Taian Science and Technology Development Program, China (2015GX2016)

  • 摘要: 非刚性点集配准算法在实际应用中要求对噪声、遮挡或异常点具有很好的鲁棒性。该文采用高斯混合模型并结合点的邻域结构信息实现非刚性点集配准。使用高斯混合模型表示模型点集,通过高斯径向基函数构建变换模型。并根据点的邻域结构信息决定高斯混合模型中每个高斯组成部分所占的比例。在EM算法的期望步(E-step)阶段求解点的对应关系,在最大化步(M-step)阶段求解异常点比例系数和变换的闭合形式解,直至算法收敛得到最优解。通过在合成数据和实际的视网膜图像上的实验,与目前几种先进的点集配准方法进行了比较,证明该算法具有较好的配准效果和鲁棒性。
  • BESL P J and MCKAY N D. Method for registration of 3-D shapes[C]. Robotics-DL tentative. International Society for Optics and Photonics, Boston, 1992: 586-606.
    CHUI H and RANGARAJAN A. A new point matching algorithm for non-rigid registration[J]. Computer Vision and Image Understanding, 2003, 89(2): 114-141.
    BELONGIE S, MALIK J, and PUZICHA J. Shape matching and object recognition using shape contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4): 509-522.
    MA J, ZHAO J, TIAN J, et al. Robust estimation of nonrigid transformation for point set registration[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Portland, 2013: 2147-2154.
    CHEN J, MA J, YANG C, et al. Non-rigid point set registration via coherent spatial mapping[J]. Signal Processing, 2015, 106: 62-72.
    ZHENG Y and DOERMANN D. Robust point matching for nonrigid shapes by preserving local neighborhood structures [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 643-649.
    GE S, FAN G, and DING M. Non-rigid point set registration with global-local topology preservation[C]. IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Columbus, 2014: 245-251.
    TANG J, SHAO L, and ZHEN X. Robust point pattern matching based on spectral context[J]. Pattern Recognition, 2014, 47(3): 1469-1484.
    LEE J H and WON C H. Topology preserving relaxation labeling for nonrigid point matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 427-432.
    YAN X, WANG W, ZHAO J, et al. Relaxation labeling for non-rigid point matching under neighbor preserving[J]. Journal of Central South University, 2013, 20: 3077-3084.
    ZHAO H, JIANG B, TANG J, et al. Image matching using a local distribution based outlier detection technique[J]. Neurocomputing, 2015, 148: 611-618.
    秦红星, 徐雷. 基于信息论的 KL-Reg 点云配准算法[J]. 电子与信息学报, 2015, 37(6): 1520-1524. doi: 10.11999/ JEIT141248.
    QIN Hongxing and XU Lei. Information theory based KL-Reg point cloud registration[J]. Journal of Electronics Information Technology, 2015, 37(6): 1520-1524. doi: 10. 11999/JEIT141248.
    TAO W and SUN K. Asymmetrical gauss mixture models for point sets matching[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, 2014: 1598-1605.
    ZHOU Z, ZHENG J, DAI Y, et al. Robust non-rigid point set registration using studentst mixture model[J]. PlosOne, 2014, 9(3): e91381.
    JIAN B and VEMURI B C. Robust point set registration using gaussian mixture models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1633-1645.
    MYRONENKO A and SONG X. Point set registration: coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275.
    ZHAO J, MA J, TIAN J, et al. A robust method for vector field learning with application to mismatch removing[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, 2011: 2977-2984.
    赵烨, 蒋建国, 洪日昌. 基于空间约束的快速鲁棒特征匹配优化[J]. 电子与信息学报, 2014, 36(11): 2571-2577. doi: 10.3724/ SP.J.1146.2013.01960.
    ZHAO Ye, JIANG Jianguo, and HONG Richang. A speeded up robust feature matching optimization based on apatial constraint[J]. Journal of Electronics Information Technology, 2014, 36(11): 2571-2577. doi: 10.3724/ SP.J. 1146.2013.01960.
  • 期刊类型引用(2)

    1. 孙殿柱,沈江华,李延瑞,林伟. 序列图像约束的点云初始配准方法. 机械工程学报. 2020(09): 215-222 . 百度学术
    2. 林桂潮,唐昀超,邹湘军,张青,时晓杰,冯文贤. 融合高斯混合模型和点到面距离的点云配准. 计算机辅助设计与图形学学报. 2018(04): 642-650 . 百度学术

    其他类型引用(13)

  • 加载中
计量
  • 文章访问数:  1872
  • HTML全文浏览量:  262
  • PDF下载量:  748
  • 被引次数: 15
出版历程
  • 收稿日期:  2015-04-30
  • 修回日期:  2015-10-08
  • 刊出日期:  2016-01-19

目录

    /

    返回文章
    返回