高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非平稳时序ARIMA模型的W频段雨衰预测

杨峰 薛斌 刘剑

杨峰, 薛斌, 刘剑. 基于非平稳时序ARIMA模型的W频段雨衰预测[J]. 电子与信息学报, 2015, 37(10): 2475-2482. doi: 10.11999/JEIT150472
引用本文: 杨峰, 薛斌, 刘剑. 基于非平稳时序ARIMA模型的W频段雨衰预测[J]. 电子与信息学报, 2015, 37(10): 2475-2482. doi: 10.11999/JEIT150472
Yang Feng, Xue Bin, Liu Jian. Rain Attenuation Prediction at W Band Based on Non-stationary Time-series ARIMA Model[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2475-2482. doi: 10.11999/JEIT150472
Citation: Yang Feng, Xue Bin, Liu Jian. Rain Attenuation Prediction at W Band Based on Non-stationary Time-series ARIMA Model[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2475-2482. doi: 10.11999/JEIT150472

基于非平稳时序ARIMA模型的W频段雨衰预测

doi: 10.11999/JEIT150472
基金项目: 

航空科学基金(20120196002)

Rain Attenuation Prediction at W Band Based on Non-stationary Time-series ARIMA Model

Funds: 

The National Aerospace Science Foundation of China (20120196002)

  • 摘要: 针对目前绝大多数雨衰预测模型仅验证到55 GHz,而经过验证的W频段预测模型相对较少,且存在模型表述复杂度高、计算量大的问题,该文提出一种结构简单、计算量小的实时预测方法。该方法基于ARIMA模型,利用非平稳雨衰时序中相邻时序间的相关性建立预测模型,对初始序列进行平稳性检验,通过差分变换将非平稳序列转化为平稳序列,并对平稳化后的时间序列进行参数估计及诊断检验,将传统非线性预测转化为线性预测。并先将该ARIMA(1,1,6)模型在不同极化方式、预测间隔和时序个数的条件下进行比较,然后分别与ITU-R, Silva Mello模型在垂直极化、预测间隔0.10 GHz,时序个数50的条件下进行比较,最后使用ARIMA(1,1,6)模型进行预测,并对照预测序列与仿真序列的吻合度。结果表明,ARIMA模型与ITU-R, Silva Mello模型所得结果预测误差不超过10-3 ,且衰减变化趋势基本相同,预测序列与仿真序列间吻合度较高,说明该方法可用于W频段雨衰预测,且预测精度高,模型表述简单。
  • Cianca E, Rossi T, Yahalom A, et al.. EHF for satellite communications: the new broadband frontier[J]. Proceedings of the IEEE, 2011, 99(11): 1858-1881.
    Nessel J A, Acosta R J, and Miranda F A. Preliminary experiments for the assessment of V/W-band links for space-earth communications[C]. IEEE Antennas and Propagation Society International Symposium(APSURSI), Orlando, FL, 2013: 1616-1617.
    Stallo C, Cianca E, Mukherjee S, et al.. UWB for multi-gigabit/s communications beyond 60 GHz[J]. Telecommunication Systems, 2013, 52(1): 161-181.
    Stallo C, Mukherjee S, Cianca E, et al.. System level comparison of broadband satellite communications in Ka/Q/W bands[C]. 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL), Rome, 2012: 1-10.
    Riva C, Capsoni C, Luini L, et al.. The challenge of using the W band in satellite communication[J]. International Journal of Satellite Communications and Networking, 2014, 32(3): 187-200.
    Sacchi C and Rossi T. Overview of PHY-layer Design Challenges and Viable Solutions in W-band Broadband Satellite Communications[M]. Springer Berlin Heidelberg, 2010: 3-18.
    Pontes M S, da Silva Mello L, Willis M J, et al.. Eperimental data and testing procedures for modelling of propagation effects on terrestrial radio links from C to W bands[C]. 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, 2012: 86-90.
    Series P. Propagation data and prediction methods required for the design of Earth-space telecommunication systems[S]. Recommendation ITU-R, 2009.
    赵振维, 卢昌胜, 林乐科. 基于雨胞分布的视距链路雨衰减预报模型[J]. 电波科学学报, 2009, 24(4): 627-631.
    Zhao Zhen-wei, Lu Chang-sheng, and Lin Le-ke. Prediction model of rain attenuation based on the EXCELL rain cell model for the terrestrail line-of-sight systems[J]. Chinese Journal of Radio Science, 2009, 24(4): 627-631.
    Capsoni C and Luini L. The SC EXCELL model for the prediction of monthly rain attenuation statistics[C]. 2013 7th European Conference on Antennas and Propagation (EUCAP), Gothenburg, 2013: 1382-1385.
    姜世泰, 高太长, 刘西川, 等. 基于微波链路的降雨场反演方法研究[J]. 物理学报, 2013, 62(15): 154303.
    Jiang Shi-tai, Gao Tai-chang, Liu Xi-chuan, et al.. Investigation of the invesion of rainfall field based on microwave links[J]. Acta Physica Sinica, 2013, 62(15): 154303.
    王辉, 魏文博, 金胜, 等. 基于同步大地电磁时间序列依赖关系的噪声处理[J]. 地球物理学报, 2014, 57(2): 531-545.
    Wang H, Wei W B, Jin S, et al.. Removal of magnetotelluric noise based on synchronous time series relationship[J]. Chinese Journal of Geophysics, 2014, 57(2): 531-545.
    Nigam R, Nigam S, and Mittal S K. Stochastic modeling of rainfall and runoff phenomenon: a time series approach review[J]. International Journal of Hydrology Science and Technology, 2014, 4(2): 81-109.
    Das D and Maitra A. Time series prediction of rain attenuation from rain rate measurement using synthetic storm technique for a tropical location[J]. AEU-International Journal of Electronics and Communications, 2014, 68(1): 33-36.
    杨明, 金晨辉, 张国双. 截断差分概率的上界估计与应用[J]. 电子与信息学报, 2014, 36(9): 2124-2130.
    Yang M, Jin C H, and Zhang G S. Evaluation and application of the upper bound probability of the truncated differential[J]. Journal of Electronics Information Technology, 2014, 36(9): 2124-2130.
    弓树宏. 电磁波在对流层中传输与散射若干问题研究[D]. [博士论文], 西安电子科技大学, 2008: 25-61.
    Gong S H. Study on some problems for radio wave propagation and scattering through troposphere[D]. [Ph.D. dissertation], Xidian University, 2008: 25-61.
    Ling S, Peng L, and Zhu F. Inference for a special bilinear time-series model[J]. Journal of Time Series Analysis, 2015, 36(1): 61-66.
    汪荣鑫. 随机过程[M]. 西安: 西安交通大学出版社, 2006: 132-143.
    Wang R X. Random Processing[M]. Xian: Xian Jiaotong University Press, 2006: 132-143.
    Hansen P R and Lunde A. Estimating the persistence and the autocorrelation function of a time series that is measured with error[J]. Econometric Theory, 2014, 30(1): 60-93.
  • 加载中
计量
  • 文章访问数:  881
  • HTML全文浏览量:  79
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-27
  • 修回日期:  2015-07-20
  • 刊出日期:  2015-10-19

目录

    /

    返回文章
    返回