高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合量子衍生神经网络模型及算法

李盼池 李国蕊

李盼池, 李国蕊. 混合量子衍生神经网络模型及算法[J]. 电子与信息学报, 2016, 38(1): 111-118. doi: 10.11999/JEIT150444
引用本文: 李盼池, 李国蕊. 混合量子衍生神经网络模型及算法[J]. 电子与信息学报, 2016, 38(1): 111-118. doi: 10.11999/JEIT150444
LI Panchi, LI Guorui. Hybrid Quantum-inspired Neural Networks Model and Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(1): 111-118. doi: 10.11999/JEIT150444
Citation: LI Panchi, LI Guorui. Hybrid Quantum-inspired Neural Networks Model and Algorithm[J]. Journal of Electronics & Information Technology, 2016, 38(1): 111-118. doi: 10.11999/JEIT150444

混合量子衍生神经网络模型及算法

doi: 10.11999/JEIT150444
基金项目: 

国家自然科学基金(61170132), 黑龙江省自然科学基金(F2015021), 黑龙江省教育厅科学技术研究项目(12541059)

Hybrid Quantum-inspired Neural Networks Model and Algorithm

Funds: 

The National Natural Science Foundation of China (61170132), The Natural Science Foundation of Heilongjiang Province, China (F2015021), The Scientific and Technological Research Project of the Education Department of Heilongjiang Province, China (12541059)

  • 摘要: 为提高人工神经网络的逼近能力,该文从研究隐层神经元的映射机制入手,提出基于量子比特在Bloch球面的绕轴旋转构造神经网络模型的新思想。首先将样本线性变换为量子比特的相位,并使量子比特在Bloch球面上分别绕着3个坐标轴旋转,旋转角度即为网络参数。然后通过投影测量可以得到量子比特的球面坐标,将这些坐标值提交到隐层激励函数,可得隐层神经元的输出。输出层采用普通神经元。基于L-M(Levenberg-Marquardt)算法设计了该模型的学习算法。实验结果表明,该文提出的模型在逼近能力、泛化能力、鲁棒性能方面,均优于采用L-M算法的普通神经网络。
  • KAK S. On quantum neural computing[J]. Information Sciences, 1995, 83(3): 143-160.
    GOPATHY P and NICOLAOS B. Quantum Neural Networks (QNNs) inherently fuzzy feed-forward neural networks[J]. IEEE Transactions on Neural Networks, 1997, 8(3): 679-693.
    VENTURA D and TONY M. Quantum associative memory with exponential capacity[C]. Proceedings of the IEEE International Joint Conference on Computational Intelligence, Piscataway, NJ, 1998: 509-513.
    AJIT N and TAMMY M. Quantum artificial neural network architectures and components[J]. Information Sciences, 2000, 128(3): 231-255.
    解光军, 庄镇泉. 量子神经网络[J]. 计算机科学, 2001, 28(7): 1-6.
    XIE G J and ZHUANG Z Q. Quantum neural network[J]. Computer Science, 2001, 28(7): 1-6.
    解光军, 范海秋, 操礼程. 一种量子神经计算网络模型[J]. 复旦学报(自然科学版), 2004, 43(5): 700-703.
    XIE G J, FAN H Q, and CAO L C. A quantum neural computational network model[J]. Journal of Fudan University (Natural Science), 2004, 43(5): 700-703.
    解光军, 周典, 范海秋. 基于量子门组单元的神经网络及其应用[J]. 系统工程理论与实践, 2005, 25(5): 113-117.
    XIE G J, ZHOU D, and FAN H Q. A neural network model based on quantum gates cell and its applications[J]. Systems Engineering Theory Practice, 2005, 25(5): 113-117.
    MAEDA M, SUENAGA M, and MIYAJIMA H. Qubit neuron according to quantum circuit for XOR problem[J]. Applied Mathematics and Computation, 2007, 185(2): 1015-1025.
    LI P C and LI S Y. Learning algorithm and application of quantum BP neural networks based on universal quantum gates[J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 167-174.
    李盼池. 一种量子神经网络模型学习算法及应用[J]. 控制理论与应用, 2009, 26(5): 531-534.
    LI P C. Learning algorithm and applications of the quantum neural networks model[J]. Control Theory Application, 2009, 26(5): 531-534.
    LI P C, SONG K P, and YANG E L. Model and algorithm of neural networks with quantum gated nodes[J]. Neural Network World, 2010, 20(2): 189-206.
    LI P C and XIAO H. A hybrid quantum-inspired neural networks with sequence inputs[J]. Neurocomputing, 2013, 117: 81-90.
    LI P C and XIAO H. Model and algorithm of quantum- inspired neural network with sequence input based on controlled rotation gates[J]. Application Intelligence, 2014, 40(1): 107-126.
    李盼池, 周红岩. 基于受控Hadamard门的量子神经网络模型及算法[J]. 计算机研究与发展, 2015, 52(1): 211-220.
    LI P C and ZHOU H Y. Model and algorithm of quantum neural network based on the controlled Hadamard gates[J]. Journal of Computer Research and Development, 2015, 52(1): 211-220.
    张翼鹏, 陈亮, 郝欢. 一种改进的量子神经网络训练算法[J]. 电子与信息学报, 2013, 35(7): 1630-1635. doi: 10.3724/SP.J. 1146.2012.01417.
    ZHANG Y P, CHEN L, and HAO H. An improved training algorithm for quantum neural networks[J]. Journal of Electronics Information Technology, 2013, 35(7): 1630-1635. doi: 10.3724/SP.J.1146.2012.01417.
    李楠, 侯旋. 自适应量子前向对传算法研究[J]. 电子与信息学报, 2013, 35(11): 2778-2783. doi: 10.3724/SP.J.1146.2013. 00101.
    LI N and HOU X. Research on adaptive quantum forward counter propagation algorithm[J]. Journal of Electronics Information Technology, 2013, 35(11): 2778-2783. doi: 10. 3724/SP.J.1146.2013. 00101.
    郭通, 兰巨龙, 李玉峰. 基于量子自适应粒子群优化径向基函数神经网络的网络流量预测[J]. 电子与信息学报, 2013, 35(9): 2220-2226. doi: 10.3724/SP.J.1146.2012.01343.
    GUO T, LAN J L, and LI Y F. Network traffic prediction with radial basis function neural network based on quantum adaptive particle swarm optimization[J]. Journal of Electronics Information Technology, 2013, 35(9): 2220-2226. doi: 10.3724/SP.J.1146.2012.01343.
    张铃, 张钹. M-P神经元模型的几何意义及其应用[J]. 软件学报, 1998, 9(5): 334-338.
    ZHANG L and ZHANG B. A geometrical representation of M-P neural model and its applications[J]. Journal of Software, 1998, 9(5): 334-338.
    张铃, 张钹, 殷海风. 多层前向网络的交叉覆盖设计算法[J]. 软件学报, 1999, 10(7): 737-742.
    ZHANG L, ZHANG B, and YIN H F. An alternative covering design algorithm of multi-layer neural networks[J]. Journal of Software, 1999, 10(7): 737-742.
    GIULIANO B, GIULIO C, and GIULIANO S. Principles of Quantum Computation and Information Volume I: Basic Concepts[M]. Singapore: World Scientific, 2004: 108-112.
  • 加载中
计量
  • 文章访问数:  1317
  • HTML全文浏览量:  130
  • PDF下载量:  394
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-20
  • 修回日期:  2015-08-21
  • 刊出日期:  2016-01-19

目录

    /

    返回文章
    返回