洪灵, 戴奉周, 刘宏伟. 一种基于二维运动重构的旋转对称目标拟规则进动参数估计方法[J]. 电子与信息学报, 2014, 36(7): 1538-1544.
|
Hong Ling, Dai Feng-zhou, and Liu Hong-wei. An approach for quasi-regularized precession parameters estimation of rotation symmetric object based on two-dimesional motion reconstruction[J]. Journal of Electronics Information Technology, 2014, 36(7): 1538-1544.
|
刘博, 常文革. 步进调频宽带雷达距离扩展目标频域检测算法[J]. 电子与信息学报, 2013, 35(10): 2481-2486.
|
Liu Bo and Chang Wen-ge. Range-spread target detection of stepped chirp modulated radar in the frequency domain[J]. Journal of Electronics Information Technology, 2013, 35(10): 2481-2486.
|
黄培康, 殷红成, 许晓剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 255-256.
|
Huang Pei-kang, Yin Hong-cheng, and Xu Xiao-jian. Radar Target Characteristics[M]. Beijing: Publishing House of Electronics Industry, 2005: 255-256.
|
Wehner D R. High-Resolution Radar[M]. Second Edition, Boston, MA: Artech House, 1995, Ch.1.
|
James D and Taylor P E. Ultra-Wideband Radar Technology [M]. New York: CRC Press, 2001, Ch.1.
|
Zhu Huan, Chen Yi, and Wang Ning. A novel method of wideband radar signal detection[C]. IEEE 7th International Congress on Image and Signal Processing, Dalian, 2014: 847-851.
|
Li X, Qiao D, and Li Y. Macro-motion detection using ultra-wideband impulse radar[C]. IEEE 36th Annual International Conference on Engineering in Medicine and Biology Society (EMBS), Chicago, IL, 2014: 2237-2240.
|
Sakamoto T and Sato T. Exploiting multipath echoes with Capon method for high-resolution ultra-wideband radar imaging using a single omni-directional antenna[C]. IEEE Conference on Antenna Measurements and Applications (CAMA), Antibes Juan-les-Pins, 2014: 16-19.
|
Conte E, Maio A D, and Ricci G. GLRT-based adaptive detection algorithms for range-spread targets[J]. IEEE Transactions on Signal Processing, 2001, 49(7): 1336-1348.
|
Perry P R, Dipietro R C, and Fante R L. Imaging of moving target[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188-200.
|
高玉祥, 张兴敢, 柏业超. 基于Keystone变换的高速运动目标检测方法研究[J]. 南京大学学报(自然科学版), 2014, 50(1): 30-34.
|
Gao Yu-xiang, Zhang Xing-gan, and Bai Ye-chao. Research on high-velocity targets detection based on Keystone transform[J]. Journal of Nanjing University (Natural Science), 2014, 50(1): 30-34.
|
侯庆禹, 刘宏伟, 保铮. 基于Keystone变换的宽带目标识别雷达杂波抑制[J]. 系统工程与电子技术, 2009, 31(1): 49-53.
|
Hou Qing-yu, Liu Hong-wei, and Bao Zheng. Clutter suppression of wideband target recognition radars based on Keystone transformation[J]. Systems Engineering and Electronics, 2009, 31(1): 49-53.
|
保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2010: 20-45.
|
Bao Zheng, Xing Meng-dao, and Wang Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2010: 20-45.
|
Bidon S, Tourneret J Y, Savy L, et al.. Bayesian sparse estimation of migrating targets for wideband radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 871-886.
|
杨万海. 雷达系统建模与仿真[M]. 西安: 西安电子科技大学出版社, 2007: 48-73.
|
Yang Wan-hai. Modelling and Simulation of Radar Systems[M]. Xian: Xidian University Publishing House, 2007: 48-73.
|
Rangaswamy M, Weiner D, and Ozturk A. Non-Gaussian random vector identification using spherically invariant random process[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 111-124.
|
戴奉周. 宽带雷达信号处理-检测、杂波抑制与认知跟踪[D]. [博士论文], 西安电子科技大学, 2010.
|
Dai Feng-zhou. Wideband radar signal processing-detection, clutter suppression and cognitive tracking[D]. [Ph.D. dissertation], Xidian University, 2010.
|
Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
|
Ziniel J and Schniter P. Dynamic compressive sensing of time-varying signals via approximate message passing[J]. IEEE Transactions on Signal Processing, 2013, 61(21): 5270-5284.
|
Angelosante D, Giannakis G B, and Grossi E. Compressed sensing of time-varying signals[C]. IEEE 16th International Conference on Digital Signal Processing, Santorini-Hellas, 2009: 1-8.
|
Tan X, Roberts W, Li J, et al.. Sparse learning via iterative minimization with application to MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2011, 59(3): 1088-1101.
|