高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DFT滤波器组的大斜视SAR成像算法

江淮 赵惠昌 汉敏 张淑宁

江淮, 赵惠昌, 汉敏, 张淑宁. 基于DFT滤波器组的大斜视SAR成像算法[J]. 电子与信息学报, 2016, 38(1): 104-110. doi: 10.11999/JEIT150381
引用本文: 江淮, 赵惠昌, 汉敏, 张淑宁. 基于DFT滤波器组的大斜视SAR成像算法[J]. 电子与信息学报, 2016, 38(1): 104-110. doi: 10.11999/JEIT150381
JIANG Huai, ZHAO Huichang, Han Min, Zhang Shuning. Highly Squint SAR Imaging Algorithm Based on DFT Filter Banks[J]. Journal of Electronics & Information Technology, 2016, 38(1): 104-110. doi: 10.11999/JEIT150381
Citation: JIANG Huai, ZHAO Huichang, Han Min, Zhang Shuning. Highly Squint SAR Imaging Algorithm Based on DFT Filter Banks[J]. Journal of Electronics & Information Technology, 2016, 38(1): 104-110. doi: 10.11999/JEIT150381

基于DFT滤波器组的大斜视SAR成像算法

doi: 10.11999/JEIT150381
基金项目: 

江苏省高校创新计划(KYLX_0368)

Highly Squint SAR Imaging Algorithm Based on DFT Filter Banks

Funds: 

Jiangsu Province University Innovation Program (KYLX_0368)

  • 摘要: 传统的大斜视角SAR成像算法利用时域线性走动减少距离徙动校正的难度,运用非线性变标算法改善方位向的聚焦效果,然而变标因子的引入也带来了一些处理上的不便。针对这一问题,该文从分块近似匹配的角度出发,结合DFT滤波器组理论,提出了一种方位向聚焦的新算法。与传统的方位非线性变标类算法相比,新算法不引入相位操作,能更好地补偿空变的多普勒调频率,稳定性和成像性能都得到了提高,且在一般情况下算法的计算量要少于传统算法。仿真结果证明了算法的有效性。
  • WONG F H and YEO T S. New applications of nonlinear chirp scaling in SAR data processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 5(39): 946-953.
    吴勇, 宋红军, 彭靳. 基于时域去走动的SAR 大斜视CS 成像算法[J]. 电子与信息学报, 2010, 32(3): 593-598. doi: 10.3724/SP.J.1146.2009.00472.
    WU Yong, SONG Hongjun, and PENG Jin. Chirp scaling imaging algorithm of SAR in high squint mode based on range walk removal[J]. Journal of Electronics Information Technology, 2010, 32(3): 593-598. doi: 10.3724/SP.J.1146.- 2009.00472.
    肖忠源, 徐华平, 李春生. 基于俯冲模型的频域距离走动校正NLCS-SAR 成像算法[J]. 电子与信息学报, 2013, 35(5): 1090-1096. doi: 10.3724/SP.J.1146.2012.01207.
    XIAO Zhongyuan, Xu Huaping, and LI Chunsheng. NLCS SAR imaging algorithm with range-walk correction in frequency domain based on dive model[J]. Journal of Electronics Information Technology, 2013, 35(5): 1090-1096. doi: 10.3724/SP.J.1146.2012.01207.
    周松, 包敏, 周鹏, 等. 基于方位非线性变标的弹载SAR 下降段成像算法[J]. 电子与信息学报, 2011, 33(6): 1420-1426. doi: 10.3724/SP.J.1146.2010.01124.
    ZHOU Song, BAO Min, ZHOU Peng, et al. An imaging algorithm for missile-borne SAR with downward movement based on azimuth nonlinear chirp scaling[J]. Journal of Electronics Information Technology, 2011, 33(6): 1420-1426. doi: 10.3724/SP.J.1146.2010.01124.
    李震宇, 梁毅, 邢孟道, 等. 弹载合成孔径雷达大斜视子孔径频域相位滤波成像算法[J]. 电子与信息学报, 2015, 37(4): 954-959. Doi: 10.11999/JEIT140618.
    LI Zhenyu, LIANG Yi, XING Mengdao, et al. A frequency phase filtering imaging algorithm for highly squint missile- borne synthetic aperture radar with subaperture[J]. Journal of Electronics Information Technology, 2015, 37(4): 954-959. doi: 10.11999/JEIT140618.
    江淮, 赵惠昌, 汉敏, 等. 基于变量解耦的俯冲加速段弹载SAR大场景成像算法[J]. 物理学报, 2014, 63(7): 1320-1325.
    JIANG Huai, ZHAO Huichang, HAN Min, et al. An imaging algorithm for missile-borne SAR with downward movement based on variable decoupling[J]. Acta Physica Sinica, 2014, 63(7): 1320-1325.
    LIU Gaogao, LI Peng, TANG Shiyang, et al. Focusing highly squinted data with motion errors based on modified non- linear chirp scaling[J]. IET Radar, Sonar Navigation, 2013, 7(5): 568-578.
    SUN Guangcai, JIANG Xiuwei, XING Mengdao, et al. Focus improvement of highly squinted data based on azimuth nolinear scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 2308-2322.
    AN Daoxiang, HUANG Xiaotao, JIN Tian, et al. Extended nonlinear chirp scaling algorithm for high-Resolution highly squint SAR data focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3595-3609.
    江淮, 汉敏, 赵惠昌, 等. 基于子带补偿的弹载聚束SAR成像算法[J]. 物理学报, 2014, 63(19): 1123-1127.
    JIANG Huai, HAN Min, ZHAO Huichang, et al. An imaging algorithm for missile-borne spotlight SAR based on subband compensation[J]. Acta Physica Sinica, 2014, 63(19): 1123-1127.
    CHANG C Y, JIN M, and CURLANDEER J C. Squint mode SAR processing algorithms[C]. 12th Canadian Symposium on Remote Sensing, Canada, 1989: 1702-1706.
    SCHIMIDT A R. Secondary range compression for improved range Doppler processing of SAR data with high squint[R]. University of British Columbia, Vancouver, 2008, 9.
    DAVIDSO G W and CUMMIN I. Signal properties of space borne squint mode SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 5(12): 611-617.
    黄源宝, 保铮, 周峰. 一种新的机载条带式SAR 沿航向运动补偿方法[J]. 电子学报, 2003, 33(3): 459-462.
    HUANG Yuanbao, BAO Zheng, and ZHOU Feng. A novel method for along track motion compensation of the airborne stripmap SAR[J]. Acta Electronica Sinica, 2005, 33(3): 459-462.
    XING M, JIANG X, WU R, et al. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2870-2883.
    WANG Yan, LI Jingwen, CHEN Jie, et al. A parameter adjusting polar format algorithm for extremely high squint SAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 640-650.
    周峰, 王琦, 刑孟道, 等. 一种机载大斜视SAR运动补偿方法[J]. 电子学报, 2007, 3(3): 460-469.
    ZHOU Feng, WANG Qi, XING Mengdao, et al. A novel method of motion compensation for airborne high squint Synthetic Aperture Radar[J]. Acta Electronica Sinica, 2007, 3(3): 460-469.
  • 加载中
计量
  • 文章访问数:  1231
  • HTML全文浏览量:  142
  • PDF下载量:  487
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-10
  • 修回日期:  2015-10-14
  • 刊出日期:  2016-01-19

目录

    /

    返回文章
    返回