高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NTRU格上无证书加密

陈虎 胡予濮

陈虎, 胡予濮. NTRU格上无证书加密[J]. 电子与信息学报, 2016, 38(2): 347-353. doi: 10.11999/JEIT150380
引用本文: 陈虎, 胡予濮. NTRU格上无证书加密[J]. 电子与信息学报, 2016, 38(2): 347-353. doi: 10.11999/JEIT150380
CHEN Hu, HU Yupu. Certificateless Encryption over NTRU Lattices[J]. Journal of Electronics & Information Technology, 2016, 38(2): 347-353. doi: 10.11999/JEIT150380
Citation: CHEN Hu, HU Yupu. Certificateless Encryption over NTRU Lattices[J]. Journal of Electronics & Information Technology, 2016, 38(2): 347-353. doi: 10.11999/JEIT150380

NTRU格上无证书加密

doi: 10.11999/JEIT150380
基金项目: 

国家自然科学基金(61472309, 61173151),安徽省自然科学基金(1208085MF108, KJ2012B157)

Certificateless Encryption over NTRU Lattices

Funds: 

The National Natural Science Foundation of China (61472309, 61173151), The Natural Science Foundation of Anhui Province (1208085MF108, KJ2012B157)

  • 摘要: 为降低密钥尺寸,利用陷门抽样算法在优选的NTRU格上抽取部分私钥并使用多项式环上带误差的学习问题计算公钥等方法来构造格上无证书加密方案。它的安全性基于多项式环上带误差学习的判定问题和小多项式比判定问题等两个困难问题假设。为获取更好的效率,该文还提出一个无证书并行加密方案。该方案用中国剩余定理分解扩大后的明文空间为多个不同素理想之积来实现并行加密。它还用中国剩余定理分解加密运算所在的多项式环获取中国剩余基来优化算法,使算法只涉及整数间运算。结果显示该方案具有计算和通信复杂度低等特点。
  • GENTRY C, PEIKERT C, and VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]. Proceedings of the 40th ACM Symposium on Theory of Computing (STOC08), Victoria, Canada, 2008: 197-206. doi: 10.1145/1374376.1374407.
    AGRAWAL S, BONEH D, and BOYEN X. Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE[J]. LNCS, 2010, 6223: 98-115. doi: 10.1007 /978-3-642-14623-7_6.
    DUCAS L, LYUBASHEVSKY V, and PREST T. Efficient identity-based encryption over NTRU lattices[J]. LNCS, 2014, 8874: 22-41. doi: 10.1007/978-3-662-45608-8_2.
    BRAKERSKI Z, GENTRY C, and VAIKUNTANATHAN V. Fully homomorphic encryption without Bootstrapping[C]. Proceedings of the 3rd Innovations in Theoretical Computer Science (ITCS) Conference, Cambridge, Massachusetts, 2012: 309-325.
    LOPEZ-ALT A, TROMER E, and VAIKUNTANATHAN V. On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption[C]. Proceedings of the 44th ACM Symposium on Theory of Computing (STOC12), New York, USA, 2012: 1219-1234. doi: 10.1145/2213977.2214086.
    BRAKERSKI?Z and VAIKUNTANATHAN V.? Lattice- based? FHE?as?secure?as?PKE[C]. Proceedings of the 5rd Innovations in Theoretical Computer Science (ITCS) Conference, Princeton, New Jersey, 2014: 1-12.
    MICCIANCIO D and PEIKERT C. Trapdoor for lattices: simpler, tighter, faster, smaller[J]. LNCS, 2012, 7237: 738-755.
    JARVIS K and NEVINS M. ETRU: NTRU over the Eisenstein integers[J]. Designs, Codes and Cryptography, 2015, 74(1): 219-242.
    BI J G and CHENG Q. Lower bounds of shortest vector lengths in random NTRU lattices[J]. Theoretical Computer Science, 2014, 560(2): 121-130. doi: 10.1007/978-3-642- 29952-0_18.
    SEPAHI R, STEINFELD R, and PIEPRZYK J. Lattice- based certificateless public-key encryption in the standard model[J]. International Journal of Information Security, 2014,?13(4):?315-333. doi: 10.1007/s10207-013-0215-8.
    JIANG Mingming, HU Yupu, LEI Hao, et al. Lattice-based certificateless encryption scheme[J]. Frontiers of Computer Science, 2014,?8(5):?828-836. doi: 10.1007/s11704-014-3187-6.
    AL-RIYAMI S S and PATERSON K G. Certificateless public key cryptography[J]. LNCS, 2003, 2894: 452-473.
    DENT A. A survey of Certificateless encryption schemes and security models[J]. International Journal of Information Security, 2008,?7(5):?347-377. doi: 10.1007/s10207-008-0055-0.
    陈虎, 张福泰, 宋如顺. 可证安全的无证书代理签名方案[J]. 软件学报, 2009, 20(3): 692-701. doi: 10.3724/SP.J.1001.2009. 00574.
    CHEN Hu, ZHANG Futai, and SONG Rushun. Certificateless proxy signature scheme with provable security[J]. Journal of Software, 2009, 20(3): 692-701. doi: 10.3724/SP.J.1001.2009.00574.
    ALWEN J and PEIKERT C. Generating shorter bases for hard random lattices[J]. Theory of Computing Systems, 2011, 48(3): 535-553.
    LYUBASHEVSKY V, PEIKERT C, and REGEV O. On ideal lattices and learning with errors over rings[J]. Journal of the ACM, 2013, 60(6): 43:1-43:35.
    STEHLE D?and STEINFELD R. Making NTRU as secure as worst-case problems over ideal lattices[J]. LNCS, 2011, 6632: 27-47.
    LYUBASHEVSKY V, PEIKERT C, and REGEV O. A toolkit for ring-LWE cryptography[J]. LNCS, 2013, 7881: 35-54.
    LINDNER R and PEIKERT C. Better key sizes (and attacks) for LWE-based encryption[J]. LNCS, 2011, 6558: 319-339. doi: 10.1007/978-3-642-19074-2_21.
  • 加载中
计量
  • 文章访问数:  1354
  • HTML全文浏览量:  146
  • PDF下载量:  530
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-01
  • 修回日期:  2015-11-13
  • 刊出日期:  2016-02-19

目录

    /

    返回文章
    返回