SIVIC J and ZISSERMAN A. Video Google: a text retrieval approach to object matching in videos[C]. Proceedings of 9th IEEE International Conference on Computer Vision, Nice, France, 2003: 1470-1477.
|
CHEN Y Z, Dick A, LI X, et al. Spatially aware feature selection and weighting for object retrieval[J]. Image and Vision Computing, 2013, 31(6): 935-948.
|
WANG J Y, Bensmail H, and GAO X. Joint learning and weighting of visual vocabulary for bag-of-feature based tissue classification[J]. Pattern Recognition, 2013, 46(3): 3249-3255.
|
OT?VIO A, PENATTI B, FERNANDA B S, et al. Visual word spatial arrangement for image retrieval and classification[J]. Pattern Recognition, 2014, 47(1): 705-720.
|
宋相法, 焦李成. 基于稀疏编码和集成学习的多示例多标记图像分类方法[J]. 电子与信息学报, 2013, 35(3): 622-626. doi: 10.3724/SP.J.1146.2012.01218.
|
SONG Xiangfa and JIAO Licheng. A multi-instance multi-label image classification method based on sparse coding and ensemble learning[J]. Jounal of Electronics Information Technology, 2013, 35(3): 622-626. doi: 10.3724/ SP.J.1146.2012.01218.
|
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
|
VAN GEMERT J C, VEENMAN C J, SMEULDERS A W M, et al. Visual word ambiguity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7): 1271-1283.
|
NISTER D and STEWENIUS H. Scalable recognition with a vocabulary tree[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 2161-2168.
|
PHILBIN J, CHUM O, ISARD M, et al. Object retrieval with large vocabularies and fast spatial matching[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1-8.
|
MU Y D, SUN J, and YAN S C. Randomized locality sensitive vocabularies for bag-of-features model[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 1-14.
|
CAO Yiqun, JIANG Tao, and THOMAS G. Accelerated similarity searching and clustering of large compound sets by geometric embedding and locality sensitive hashing[J]. Bioinformatics, 2010, 26(7): 953-959.
|
XIA Hao, WU Pengcheng, and STEVEN C H. Boosting multi-kernel locality-sensitive hashing for scalable image retrieval[C]. Proceedings of 35th ACM SIGIR Conference on Research and Development in Information Retrieval, Portland, Oregon, USA, 2012: 55-64.
|
张瑞杰, 郭志刚, 李弼程. 基于E2LSH-MKL的视觉语义概念检测[J]. 自动化学报, 2012, 38(10): 1671-1678.
|
ZHANG Ruijie, GUO Zhigang, and LI Bicheng. A visual semantic concept detection algorithm based on E2LSH- MKL[J]. Acta Automatica Sinica, 2012, 38(10): 1671-1678.
|
ZHENG Q and GAO W. Constructing visual phrases for effective and efficient object-based image retrieval[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2008, 5(1): 1-19.
|
CHEN T, YAP K H, and ZHANG D J. Discriminative soft bag-of-visual phrase for mobile landmark recognition[J]. IEEE Transactions on Multimedia, 2014, 16(3): 612-622.
|
PHILBIN J, CHUM O, ISARD M, et al. Lost in quantization: improving particular object retrieval in large scale image databases[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2009: 278-286.
|
WEINSHALL D, LEVI G, and HANUKAEV D. LDA topic model with soft assignment of descriptors to words[C]. Proceedings of the 30th International Conference on Machine Learning, Atlanta, USA, 2013: 711-719.
|
LAZEBNIK S, SCHMID C, and PONCE J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New York, USA, 2006: 2169-2178.
|
SHARMA G and JURIE F. Learning discriminative spatial representation for image classification[C]. Proceedings of the 22nd British Machine Vision Conference, Dundee, Britain, 2011: 1-11.
|
赵春晖, 王莹, KANEKO M. 一种基于词典模型的图像优化分类方法[J]. 电子与信息学报, 2012, 34(9): 2064-2070. doi: 10.3724/SP.J.1146.2012.00047.
|
ZHAO Chunhui, WANG Ying, and KANEKO M. An optimized method for image classification based on bag of words model[J]. Journal of Electronics Information Technology, 2012, 34(9): 2064-2070. doi: 10.3724/ SP.J.1146.2012.00047.
|
赵仲秋, 季海峰, 高隽, 等. 基于稀疏编码多尺度空间潜在语义分析的图像分类[J]. 计算机学报, 2014, 37(6): 1251-1260.
|
ZHAO Zhongqiu, JI Haifeng, GAO Jun, et al. Sparse coding based on multi-scale spatial latent semantic analysis for image classification[J]. Chinese Journal of Computers, 2014, 37(6): 1251-1260.
|
XIE L, TIAN Q, and ZHANG B. Spatial pooling of heterogeneous features for image classification[J]. IEEE Transactions on Image Processing, 2014, 23(5): 1994-2008.
|
GENG B, YANG L, and XU C. A study of language model for image retrieval[C]. Proceedings of IEEE International Conference on Data Mining Workshops, Washington, DC, USA, 2009: 158-163.
|
吴磊. 视觉语言分析: 从底层视觉特征表达到语义距离学习[D]. [博士论文], 中国科学技术大学, 2010.
|
WU Lei. Visual language analysis: from low level feature representation to semantic metric learning[D]. [Ph.D. dissertation], University of Science and Technology of China, 2010.
|
DATAR M, IMMORLICA N, and INDYK P. Locality-sensitive hashing scheme based on p-stable distributions[C]. Proceedings of the 20th Annual Symposium on Computational Geometry, New York, USA, 2004: 253-262.
|
HAREL J, KOCH C, and PERONA P. Graph-based visual saliency [C]. Proceedings of Advances in Neural Information Processing Systems, NewYork, USA, 2007: 545-552.
|
SLANEY M and CASEY M. Locality-sensitive hashing for finding nearest neighbors[J]. IEEE Signal Processing Magazine, 2008, 25(2): 128-131.
|
高毫林, 彭天强, 李弼程. 基于多表频繁项投票和桶映射链的快速检索方法[J]. 电子与信息学报, 2012, 34(11): 2574-2581. doi: 10.3724/ SP.J.1146.2012.00548.
|
GAO Haolin, PENG Tianqiang, and LI Bicheng. A fast retrieval method based on frequent items voting of multi table and bucket map chain[J]. Journal of Electronics Information Technology, 2012, 34(11): 2574-2581. doi: 10.3724/SP.J.1146.2012.00548.
|
ITTI L, KOCH C, and NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4): 1254-1259.
|
LI F F, FERGUS R, and PERONA P. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories[J]. Computer Vision and Image Understanding, 2007, 106(1): 59-70.
|