高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高度冗余Gabor框架的欠Nyquist采样系统子空间探测

陈鹏 孟晨 王成

陈鹏, 孟晨, 王成. 基于高度冗余Gabor框架的欠Nyquist采样系统子空间探测[J]. 电子与信息学报, 2015, 37(12): 2877-2884. doi: 10.11999/JEIT150327
引用本文: 陈鹏, 孟晨, 王成. 基于高度冗余Gabor框架的欠Nyquist采样系统子空间探测[J]. 电子与信息学报, 2015, 37(12): 2877-2884. doi: 10.11999/JEIT150327
Chen Peng, Meng Chen, Wang Cheng. Subspace Detection of Sub-Nyquist Sampling System Based on Highly Redundant Gabor Frames[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2877-2884. doi: 10.11999/JEIT150327
Citation: Chen Peng, Meng Chen, Wang Cheng. Subspace Detection of Sub-Nyquist Sampling System Based on Highly Redundant Gabor Frames[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2877-2884. doi: 10.11999/JEIT150327

基于高度冗余Gabor框架的欠Nyquist采样系统子空间探测

doi: 10.11999/JEIT150327
基金项目: 

国家自然科学基金(61372039)

Subspace Detection of Sub-Nyquist Sampling System Based on Highly Redundant Gabor Frames

Funds: 

The National Natural Science Foundation of China (61372039)

  • 摘要: 基于指数再生窗Gabor框架的欠Nyquist采样系统对窄脉冲信号完成采样与重构一般情况下效果较好,但是当框架高度冗余时,使用传统面向系数域的方法对信号进行子空间探测会面临失败或较大误差。该文采用面向信号域的思想,构建了分块的对偶Gabor字典,并对信号分块稀疏表示;根据信号的分块表示推导了采样系统的测量矩阵,提出了测量矩阵受字典相干性约束的分块-相干性;将信号合成模型引入多观测向量问题,提出基于分块-闭包的同步正交匹配追踪算法(SOMPB,F ),用于信号子空间探测。此外还证明了算法的收敛约束条件。仿真结果表明,所提子空间探测方法相比传统方法提高了信号重构成功率,降低了采样通道数,并增强了系统鲁棒性。
  • Park S and Park J. Compressed sensing MRI exploiting complementary dual decomposition[J]. Medical Image Analysis, 2014, 18(3): 472-486.
    王忠良, 冯燕, 贾应彪. 基于线性混合模型的高光谱图像谱间压缩感知重构[J]. 电子与信息学报, 2014, 36(11): 2737-2743.
    Wang Zhong-liang, Feng Yan, and Jia Ying-biao. Reconstruction of hyperspectral images with spectral compressive sensing based on linear mixing models[J]. Journal of Electronics Information Technology, 2014, 36(11): 2737-2743.
    张京超, 付宁, 乔立岩, 等. 一种面向信息带宽的频谱感知方法研究[J]. 物理学报, 2014, 63(3): 030701.
    Zhang Jing-chao, Fu Ning, Qiao Li-yan, et al.. Investigation of information bandwidth oriented spectrum sensing method[J]. Acta Physica Sinica, 2014, 63(3): 030701.
    Omer B and Eldar Y C. Sub-Nyquist radar via doppler focusing[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1796-1811.
    Herman M A and Strohmer T. High-resolution radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2275-2284.
    Razzaque M A, Bleakley C, and Dobson S. Compression in wireless sensor networks: a survey and comparative evaluation[J]. ACM Transactions on Sensor Networks, 2013, 10(1): Article No. 5.
    Michaeli T and Eldar Y C. Xampling at the rate of innovation[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1121-1133.
    Urigiien J A, Eldar Y C, and Dragotti P L. Compressed Sensing: Theory and Applications[M]. Cambridge, U.K.: Cambridge University Press, 2012: 148-213.
    Matusiak E and Eldar Y C. Sub-Nyquist sampling of short pulses[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1134-1148.
    陈鹏, 孟晨, 孙连峰, 等. 基于指数再生窗 Gabor 框架的窄脉冲欠 Nyquist 采样与重构[J]. 物理学报, 2014, 67(7): 070701.
    Chen Peng, Meng Chen, Sun Lian-feng, et al.. Sub-Nyquist sampling and reconstruction of short pulses based on Gabor frames with exponential reproducing windows[J]. Acta Physica Sinica, 2015, 64(7): 070701.
    Mishali M, Eldar Y C, and Elron A J. Xampling: signal acquisition and processing in union of subspaces[J]. IEEE Transactions on Signal Processing, 2011, 59(10): 4719-4734.
    Candes E J, Eldar Y C, Needell D, et al.. Compressed sensing with coherent and redundant dictionaries[J]. Applied and Computational Harmonic Analysis, 2011, 31(1): 59-73.
    Giryes R and Elad M. Can we allow linear dependencies in the dictionary in the sparse synthesis framework?[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 5459-5463.
    Blanchard J D, Cermak M, Hanle D, et al.. Greedy algorithms for joint sparse recovery[J]. IEEE Transactions on Signal Processing, 2014, 62(7): 1694-1704.
    Kloos T and St?ckler J. Zak transforms and gabor frames of totally positive functions and exponential B-splines[J]. Journal of Approximation Theory, 2014, 184(5): 209-237.
    Qiu S and Feichtinger H G. Discrete Gabor structures and optimal representations[J]. IEEE Transactions on Signal Processing, 1995, 43(10): 2258-2268.
    Qiu S. Block-circulant Gabor-matrix structure and discrete Gabor transforms[J]. Optical Engineering, 1995, 34(10): 2872-2878.
    Janssen A. Representations of Gabor Frame Operators[M]. Netherlands, Springer, 2001: 73-101.
    Casazza P G, Christensen O, and Janssen A. WeylHeisenberg frames, translation invariant systems and the Walnut representation[J]. Journal of Functional Analysis, 2001, 180(1): 85-147.
    Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054.
    Donoho D L, Elad M, and Temlyakov V N. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
    Leviatan D and Temlyakov V N. Simultaneous greedy approximation in Banach spaces[J]. Journal of Complexity, 2005, 21(3): 275-293.
  • 加载中
计量
  • 文章访问数:  1079
  • HTML全文浏览量:  80
  • PDF下载量:  464
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-20
  • 修回日期:  2015-08-24
  • 刊出日期:  2015-12-19

目录

    /

    返回文章
    返回