高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用用户移动提高WiFi业务分担能力的用户激励机制研究

蔡世杰 肖立民 王京 周世东

蔡世杰, 肖立民, 王京, 周世东. 利用用户移动提高WiFi业务分担能力的用户激励机制研究[J]. 电子与信息学报, 2015, 37(10): 2431-2437. doi: 10.11999/JEIT150285
引用本文: 蔡世杰, 肖立民, 王京, 周世东. 利用用户移动提高WiFi业务分担能力的用户激励机制研究[J]. 电子与信息学报, 2015, 37(10): 2431-2437. doi: 10.11999/JEIT150285
Cai Shi-jie, Xiao Li-min, Wang Jing, Zhou Shi-dong. Incentive Mechanism Design for WiFi Offloading with Users Mobility[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2431-2437. doi: 10.11999/JEIT150285
Citation: Cai Shi-jie, Xiao Li-min, Wang Jing, Zhou Shi-dong. Incentive Mechanism Design for WiFi Offloading with Users Mobility[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2431-2437. doi: 10.11999/JEIT150285

利用用户移动提高WiFi业务分担能力的用户激励机制研究

doi: 10.11999/JEIT150285
基金项目: 

国家自然科学基金(61201192, 61321061) ,国家863计划项目(2014AA01A703) ,国家973计划项目(2012CB316002),国家重大专项(2013ZX03001008-004),清华大学与爱立信的横向合作和东南大学重点实验室基金(2012D02)

Incentive Mechanism Design for WiFi Offloading with Users Mobility

Funds: 

The National Natural Science Foundation of China (61201192, 61321061)

  • 摘要: WiFi网络可以分担蜂窝网络的通信业务压力,缓解其拥塞状况。然而,WiFi网络的业务分担只能在其覆盖范围内进行。由于用户具有移动性,如果通过提供一些奖励引导WiFi网络覆盖范围之外的用户延迟其在蜂窝网络中的业务、直至其进入WiFi覆盖区再接受服务,WiFi网络的业务分担能力将得到显著提升。该文探讨了运营商通过激励机制鼓励用户延迟其蜂窝网络业务转而接入WiFi网络的过程,并将其建模为两阶段斯塔克博格(Stackelberg)博弈。在该博弈中,运营商期望采取最优的奖励方案,能够兼顾蜂窝网络拥塞和付出的用户奖励。该文推导出了运营商的最优奖励方案。数值结果表明,所提激励机制可以有效降低包括蜂窝网络拥塞代价和奖励用户代价在内的运营商总代价。
  • Cisco Systems Inc. Cisco visual networking index: global mobile data traffic forecast update, 2011-2016[R]. San Jose, CA, USA, 2012.
    Bennis M, Simsek M, Czylwik A, et al.. When cellular meets WiFi in wireless small cell networks[J]. IEEE Communications Magazine, 2013, 51(6): 44-50.
    Liu Q, Li X R, Xu W J, et al.. Empirical analysis of ZigBee and WiFi coexistence[C]. The 2014 International Conference on Innovative Design and Manufacturing (ICIDM), Montreal, QC, 2014: 117-122.
    Farshad A, Marina M K, and Garcia F. Urban WiFi characterization via mobile crowdsensing[C]. IEEE Network Operations and Management Symposium (NOMS), Krakow, 2014: 1-9.
    Kim Y, Lee K, and Shroff N B. An analytical framework to characterize the efficiency and delay in a mobile data offloading system [C]. MobiHoc, Philadelphia, PA, USA, 2014: 139-149.
    Zhuo X, Gao W, Cao G, et al.. Win-coupon: an incentive framework for 3G traffic offloading[C]. 19th IEEE International Conference on Network Protocols (ICNP), Vancouver, BC Canda, 2011: 206-215.
    Cheung M H and Huang J W. Optimal delayed Wi-Fi offloading[C]. 11th International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), Tsukuba Science City, Japan, 2013: 564-571.
    Lee J, Yi Y, Chong S, et al.. Economics of WiFi offloading: trading delay for cellular capacity[J]. IEEE Transactions on Wireless Communications, 2014, 13(3): 1540-1554.
    Lee K, Lee J, Yi Y, et al.. Mobile data offloading: how much can WiFi deliver [J]. IEEE/ACM Transactions on Networking, 2013, 21(2): 536-550.
    刘莉, 荆涛, 付立. 一种分层蜂窝网中基于用户分类的建模分析方法 [J]. 电子与信息学报, 2007, 29(9): 2235-2238.
    Liu Li, Jing Tao, and Fu Li. A user-classified method for modeling and analysis of hierarchical cellular networks[J]. Journal of Electronics Information Technology, 2007, 29(9): 2235-2238.
    Tseng C C, Peng C S, Lo S H, et al.. Co-tier uplink power control in femtocell networks by Stackelberg game with pricing[C]. 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace Electronic Systems (VITAE), Aalborg, 2014: 1-5.
    Fan L F, Friesz T L, Yao T, et al.. Strategic pricing and production planning using a Stackelberg differential game with unknown demand parameters[J]. IEEE Transactions on Engineering Management, 2013, 60(3): 581-591.
    Andrews J G, Baccelli F, and Ganti R K. A tractable approach to coverage and rate in cellular networks [J]. IEEE Transactions on Communications, 2011, 59(11): 3122-3134.
    Gibbens R, Mason R, and Steinberg R. Internet service classes under competition[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(12): 2490-2498.
    Li C T, Wang J K, Wang B, et al.. Cross-layer congestion control algorithm based on compressed sensing in wireless sensor networks[C]. 33rd Chinese Control Conference (CCC), Nanjing, 2014: 5830-5833.
    Mohammadizadeh N and Zhuang W H. Cooperation of heterogeneous wireless networks in end-to-end congestion control for QoS provisioning[C]. IEEE International Conference on Communications (ICC), Budapest, 2013: 6454-6458.
    Islam M, Rahman M L, and Mamun M. Load adaptive congestion control and rate readjustment for wireless mesh networks [C]. 5th IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, 2014: 1088-1092.
  • 加载中
计量
  • 文章访问数:  1173
  • HTML全文浏览量:  114
  • PDF下载量:  510
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-09
  • 修回日期:  2015-06-01
  • 刊出日期:  2015-10-19

目录

    /

    返回文章
    返回