高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式损耗加载和导引中心调节对TE11模工作回旋行波管稳定性影响的多模稳态分析

彭澍源 王秋实 张兆传 罗积润

彭澍源, 王秋实, 张兆传, 罗积润. 分布式损耗加载和导引中心调节对TE11模工作回旋行波管稳定性影响的多模稳态分析[J]. 电子与信息学报, 2015, 37(9): 2260-2264. doi: 10.11999/JEIT150192
引用本文: 彭澍源, 王秋实, 张兆传, 罗积润. 分布式损耗加载和导引中心调节对TE11模工作回旋行波管稳定性影响的多模稳态分析[J]. 电子与信息学报, 2015, 37(9): 2260-2264. doi: 10.11999/JEIT150192
Peng Shu-yuan, Wang Qiu-shi, Zhang Zhao-chuan, Luo Ji-run. Effects of Distributed Loss Loading and Guiding Center Radius Modifying on Stability of Gyro-traveling Wave Tube[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2260-2264. doi: 10.11999/JEIT150192
Citation: Peng Shu-yuan, Wang Qiu-shi, Zhang Zhao-chuan, Luo Ji-run. Effects of Distributed Loss Loading and Guiding Center Radius Modifying on Stability of Gyro-traveling Wave Tube[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2260-2264. doi: 10.11999/JEIT150192

分布式损耗加载和导引中心调节对TE11模工作回旋行波管稳定性影响的多模稳态分析

doi: 10.11999/JEIT150192

Effects of Distributed Loss Loading and Guiding Center Radius Modifying on Stability of Gyro-traveling Wave Tube

  • 摘要: 该文利用多模稳态非线性理论,研究损耗材料加载和导引中心半径调节对回旋行波管稳定性改善的效果。结果表明,随着损耗材料电导率的减小返波振荡强度逐渐减小直至完全消失,同时工作模式输出功率显著增大;适当增大导引中心半径后,完全抑制返波振荡需要的损耗更小,可以减轻热损耗散热的困难,同时还能减小管子输出性能对电导率变化的敏感性。
  • 刘盛纲. 相对论电子学[M]. 北京: 科学出版社, 1987: 1-2.
    Lau Y Y, Chu K R, Barnett L R, et al.. Gyrotron traveling wave amplifier1: analysis of oscillations[J]. International Journal of Infrared and Millimeter Waves, 1981, 2(3): 373-392.
    Barnett L R, Chang L H, Chen H Y, et al.. Absolute instability competition and suppression in a mllimeter-wave gyrotron traveling wave tube[J]. Physical Review Letters, 1989, 63(10): 1062-1065.
    薛智浩, 刘濮鲲, 杜朝海, 等. W波段螺旋波纹波导回旋行波管注波互作用的非线性分析[J]. 物理学报, 2014, 63(8): 080201.1-080201.8.
    Xue Zhi-hao, Liu Pu-kun, Du Chao-hai, et al.. Research on non-linear beam-wave interaction of W-band Gyro-TWT with helical waveguide[J]. Acta Physica Sinica, 2014, 63(8): 080201.1-080201.8.
    Tang Y, Luo Y, Xu Y, et al.. Self-consistent nonlinear analysis and 3D particle-In-cell simulation of a W-band gyro-TWT[J]. Journal of Infrared Millmeter and Terahz Waves, 2014, 35(10): 799-812.
    Wang J X, Luo Y, Xu Y, et al.. Numerical design and optimization of a curved collector for a Q-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2014, 61(1): 147-150.
    Denisov G G, Samsonov S V, Mishakin S V, et al. Microwave system for feeding and extracting power to and from a gyro-TWT through one window[J]. IEEE Electron Devices Letters, 2014. 35(7): 789-791.
    Wang J X, Luo Y, Xu Y, et al. Simulation and experiment of a Ku-band gyro-TWT[J]. IEEE Transactions on Electron Devices, 2013, 61(6): 1818-1823.
    Alaria M K, Choyal Y, and Sinha A K. Design of a Ka-band gyro-TWT amplifier for broadband operation[J]. Physics of Plasmas, 2013, 20(7): 073110.1-073110.6.
    Yan R, Tang Y, Luo Y, et al.. Design and experimental study of a high-gain W-band gyro-TWT with nonuniform periodic dielectric loaded waveguide[J]. IEEE Transactions on Plasma Science, 2014, 61(7): 2564-2569.
    Chu K R, Barnett L R, Chen H Y, et al.. Stabilization of absolute instabilities in the gyrotron traveling wave amplifier[J]. Physical Review Letters, 1995, 74(7): 1103-1106.
    Chu K R, Chen H Y, Hung C L, et al.. Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier[J]. IEEE Transactions on Plasma Science, 1999, 27(2): 391-404.
    Wang Q S, McDermott D B, and Luhmann N C Jr. Operation of a stable 200-kw second-harmonic Gyro-TWT amplifier[J]. IEEE Transactions on Plasma Science, 1996, 24(3): 700-706.
    Sirigiri J R, Shapiro M A, Temkin R J, et al.. High-power 140-GHz quasioptical gyrotron traveling-wave amplifier[J]. Physical Review Letters, 2003, 90(25): 258302.1-258302.4.
    Chu K R, Barnett L R, Chen H Y, et al.. Stabilization of absolute instabilities in the gyrotron traveling wave amplifier[J]. Physical Review Letters, 1995, 74(7): 1103-1106.
    McDermott D B, Song H H, Hirata Y, et al. Design of a W-Band TE01 mode gyrotron traveling-wave amplifier with high power and broad-band capabilities[J]. IEEE Transactions on Plasma Science, 2002, 30(3): 894-902.
    Song H H, McDermott D B, Hirata Y, et al.. Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier[J]. Physics of Plasmas, 2004, 11(5): 2935-2941.
    彭澍源, 王秋实, 张兆传, 等. 回旋行波管多模稳态理论及初步应用[J]. 物理学报, 2014, 63(20): 208401.1-208401.9.
    Peng Shu-yuan, Wang Qiu-shi, Zhang Zhao-chuan, et al.. Multimode steady-state theory for Gyro-TWT and simulation of mode competition[J]. Acta Physica Sinica, 2014, 63(20): 208401.1-208401.9.
    焦重庆. 回旋行波放大器的相关理论研究与数值模拟[D]. [博士论文], 中国科学院研究生院, 2007.
    Jiao Chong-qing. Theoretical study and numerical simulation of the gyrotron traveling wave amplifier[D]. [Ph.D. dissertation], Graduate University of Chinese Academy of Sciences, 2007.
  • 加载中
计量
  • 文章访问数:  1565
  • HTML全文浏览量:  160
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-03
  • 修回日期:  2015-04-08
  • 刊出日期:  2015-09-19

目录

    /

    返回文章
    返回