高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用视觉目标遮挡和轮廓信息确定下一最佳观测方位

张世辉 韩德伟 何欢

张世辉, 韩德伟, 何欢. 利用视觉目标遮挡和轮廓信息确定下一最佳观测方位[J]. 电子与信息学报, 2015, 37(12): 2921-2928. doi: 10.11999/JEIT150190
引用本文: 张世辉, 韩德伟, 何欢. 利用视觉目标遮挡和轮廓信息确定下一最佳观测方位[J]. 电子与信息学报, 2015, 37(12): 2921-2928. doi: 10.11999/JEIT150190
Zhang Shi-hui, Han De-wei, He Huan. Determining Next Best View Using Occlusion and Contour Information of Visual Object[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2921-2928. doi: 10.11999/JEIT150190
Citation: Zhang Shi-hui, Han De-wei, He Huan. Determining Next Best View Using Occlusion and Contour Information of Visual Object[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2921-2928. doi: 10.11999/JEIT150190

利用视觉目标遮挡和轮廓信息确定下一最佳观测方位

doi: 10.11999/JEIT150190
基金项目: 

国家自然科学基金(61379065)和河北省自然科学基金 (F2014203119)

Determining Next Best View Using Occlusion and Contour Information of Visual Object

Funds: 

The National Natural Science Foundation of China (61379065)

  • 摘要: 下一最佳观测方位的确定是视觉领域一个比较困难的问题。该文提出一种基于视觉目标深度图像利用遮挡和轮廓信息确定下一最佳观测方位的方法。该方法首先对当前观测方位下获取的视觉目标深度图像进行遮挡检测。其次根据深度图像遮挡检测结果和视觉目标轮廓构建未知区域,并采用类三角剖分方式对各未知区域进行建模。然后根据建模所得的各小三角形的中点、法向量、面积等信息构造目标函数。最后通过对目标函数的优化求解得到下一最佳观测方位。实验结果表明所提方法可行且有效。
  • Bottino A and Laurentini A. What is next an interactive next best view approach[J]. Pattern Recognition, 2006, 39(1): 126-132.
    Pintilie G D and Stuerzlinger W. An evaluation of interactive and automated next best view methods in 3D scanning[J]. Computer-Aided Design and Applications, 2013, 10(2): 279-291.
    曾明勇, 吴泽民, 田畅, 等. 基于外观统计特征融合的人体目标再识别[J]. 电子与信息学报, 2014, 36(8): 1844-1851.
    Zeng Ming-yong, Wu Ze-min, Tian Chang, et al.. Fusing appearance statistical features for person re-identification[J]. Journal of Electronics Information Technology, 2014, 36(8): 1844-1851.
    李烈辰, 李道京. 基于压缩感知的连续场景稀疏阵列SAR三维成像[J]. 电子与信息学报, 2014, 36(9): 2166-2172.
    Li Lie-Chen and Li Dao-jing. Sparse array SAR 3D imaging for continuous scene based on compressed sensing[J]. Journal of Electronics Information Technology, 2014, 36(9): 2166-2172.
    Trummer M, Munkelt C, and Denzler J. Online next-best-view planning for accuracy optimization using an extended E-criterion[C]. Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010: 1642-1645.
    Haner S and Heyden A. Covariance propagation and next best view planning for 3D reconstruction[C]. Proceedings of the 12th European Conference on Computer Vision, Florence, Italy, 2012: 545-556.
    Connolly C. The determination of next best views[C]. Proceedings of the IEEE International Conference on Robotics and Automation, Missouri, USA, 1985: 432-435.
    Maver J and Bajcsy R. Occlusion as a guide for planning the next view[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(5): 417-432.
    Banta J E, Wong L M, Dumont C, et al.. A next-best-view system for autonomous 3-D object reconstruction[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2000, 30(5): 589-598.
    Li Y F and Liu Z G. Information entropy-based viewpoint planning for 3-D object reconstruction[J]. IEEE Transactions on Robotics, 2005, 21(3): 324-337.
    Vasquez-Gomez J I, Sucar L E, and Murrieta-Cid R. Hierarchical ray tracing for fast volumetric next-best-view planning[C]. Proceedings of the International Conference on Computer and Robot Vision, Regina, SK, Canada, 2013: 181-187.
    Potthast C and Sukhatme G. A probabilistic framework for next best view estimation in a cluttered environment[J]. Journal of Visual Communication and Image Representation, 2014, 25(1): 148-164.
    张世辉, 刘建新, 孔令富. 基于深度图像利用随机森林实现遮挡检测[J]. 光学学报, 2014, 34(9): 0915003: 1-12.
    Zhang Shi-hui, Liu Jian-xin, and Kong Ling-fu. Using random forest for occlusion detection based on depth image[J]. Acta Optica Sinica, 2014, 34(9): 0915003: 1-12.
    Curtis F and Overton M. A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization[J]. SIAM Journal on Optimization, 2012, 22(2): 474-500.
    Hetzel G, Leibe B, Levi P, et al.. 3D object recognition from range images using local feature histograms[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Piscataway, USA, 2001: II394-II399.
  • 加载中
计量
  • 文章访问数:  1293
  • HTML全文浏览量:  140
  • PDF下载量:  585
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-02
  • 修回日期:  2015-08-19
  • 刊出日期:  2015-12-19

目录

    /

    返回文章
    返回