高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

周期为2p2 的四阶二元广义分圆序列的线性复杂度

杜小妮 王国辉 魏万银

杜小妮, 王国辉, 魏万银. 周期为2p2 的四阶二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2015, 37(10): 2490-2494. doi: 10.11999/JEIT150180
引用本文: 杜小妮, 王国辉, 魏万银. 周期为2p2 的四阶二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2015, 37(10): 2490-2494. doi: 10.11999/JEIT150180
Du Xiao-ni, Wang Guo-hui, Wei Wan-yin. Linear Complexity of Binary Generalized Cyclotomic Sequences of Order Four with Period2p2[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2490-2494. doi: 10.11999/JEIT150180
Citation: Du Xiao-ni, Wang Guo-hui, Wei Wan-yin. Linear Complexity of Binary Generalized Cyclotomic Sequences of Order Four with Period2p2[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2490-2494. doi: 10.11999/JEIT150180

周期为2p2 的四阶二元广义分圆序列的线性复杂度

doi: 10.11999/JEIT150180
基金项目: 

国家自然科学基金(61202395, 61462077, 61262057)和教育部新世纪优秀人才支持计划基金(NCET-12-0620)

Linear Complexity of Binary Generalized Cyclotomic Sequences of Order Four with Period2p2

Funds: 

The National Natural Science Foundation of China (61202395, 61462077, 61262057, 61562077)

  • 摘要: 该文基于分圆理论,构造了一类周期为2p2的四阶二元广义分圆序列。利用有限域上多项式分解理论研究序列的极小多项式和线性复杂度。结果表明,该序列具有良好的线性复杂度性质,能够抗击B-M算法的攻击。是密码学意义上性质良好的伪随机序列。
  • Golomb S W and Gong G. Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar Applications[M]. Cambridge: UK, Cambridge University Press, 2005: 174-175.
    Massey J L. Shift register synthesis and BCH decoding[J]. IEEE Transactions on Information Theory, 1969, 15(1): 122-127.
    杜小妮, 阎统江, 石永芳. 周期为的广义割圆序列的线性复杂度[J]. 电子与信息学报, 2010, 32(4): 821-824.
    Du Xiao-ni, Yan Tong-jiang, and Shi Yong-fang. Linear complexity of generalized cyclotomic sequences with period pm[J]. Journal of Electronics Information Technology, 2010, 32(4): 821-824.
    Du Xiao-ni and Chen Zhi-xun. Trace representation of binary generalized cyclotomic squences with length pm[J]. IEICE Transactions on Fundamentals of Electronices Communi- cations and Computer Sciences, 2011, E94-A(2): 761-765.
    李瑞芳, 柯品惠. 一类新的周期为的二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2014, 36(3): 650-654.
    Li Rui-fang and Ke Pin-hui. The linear complexity of a new class of generalized cyclotomic sequences with period 2pq[J]. Journal of Electronics Information Technology, 2014, 36(3): 650-654.
    Chang Zu-ling and Li Dan-dan. On the linear complexity of the quaternary cyclotomic sequences with the period 2pq[J]. IEICE Transactions on Fundamental of Electronics Communications and Computer Sciences, 2014, E97-A(2): 679-684.
    Li Xiao-ping, Ma Wen-ping, and Yan Tong-jiang. Linear complexity of binary Whiteman generalized cyclotomic sequences of order 4[J]. IEICE Transactions on Fundamentals of Electronices Communications and Computer Sciences, 2013, 96A(1): 363-366.
    Zhao Chun-e and Ma Wen-ping. Autocorrelation values of generalized cyclotomic sequences of order six[J]. IEICE Transactions on Fundamentals of Electronices Communications and Computer Sciences, 2013, E96-A(10): 2045-2048.
    Edemskiy V and Lvanov A. Linear complexity of quaternary sciences of length pq with low autocorrelation[J]. Journal of Computational and Applied Mathematics, 2014, 259B: 555-560.
    Ke Pin-hui, Lin Chang-lu, and Zhang Sheng-yuan. Linear complexity of quaternary sciences with odd period and low autocorrelation[J]. The Journal of China Universities of Posts and Telecommunications, 2014, 21(5): 89-93.
    Li Dan-dan and Wen Qiao-yan. Linear complexity of generalized cyclotomic quaternary sequences with period pq[J]. IEICE Transactions on Fundamentals of Electronices Communications and Computer Sciences, 2014, E97-A(5): 1153-1158.
    Yan Tong-jiang and Li Xiao-ping. Some note on the generalized cyclotomic sequence of length 2pm and pm[J]. IEICE Transactions on Fundamentals of Electronices Communications and Computer Sciences, 2013, E96-A(10): 997-1000.
    Zhang Jing-wei, Zhao Chang-an, and Ma Xiao. Linear complexity of generalized cyclotomic binary sequences with the period 2pm[J]. Applicable Algebra in Engineering, Communication and Computing, 2010, 21(2): 93-108.
    Zhang Jing-wei, Zhao Chang-an, and Ma Xiao. On the linear complexity of generalized cyclotomic binary sequences with length 2p2[J]. IEICE Transactions on Fundamentals of Electronices Communications and Computer Sciences, 2010, E93-A(1): 302-308.
    Ke Pin-hui and Zhang J. On the linear complexity and autocorrelation of generalized cyclotomic binary sequences with length 2pm[J]. Designs, Codes and Cryptograpy, 2013, 67(3): 325-339.
    Cusick T and Ding Cun-sheng. Stream Ciphers and Number Theory[M]. Elsevier Science, 2004: 198-212.
    Yan Tong-jiang, Huang Bing-jia, and Xiao Guo-zhen. Cryptographic properties of some binary generalized cyclotomic sequences with length p2[J]. Information Science, 2008, 178(4): 1078-1086.
    Ding Cun-sheng and Hellseth. T. New generalized cyclotomy and its applications[J]. Finite Field Their Applications, 1998, 4(2): 140-166.
  • 加载中
计量
  • 文章访问数:  1447
  • HTML全文浏览量:  164
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-02
  • 修回日期:  2015-07-01
  • 刊出日期:  2015-10-19

目录

    /

    返回文章
    返回