Lempel A and Greenberger H. Families of sequences with optimal Hamming correlation properties[J]. IEEE Transactions on Information Theory, 1974, 20(1): 90-94.
|
Peng D Y and Fan P Z. Lower bounds on the Hamming auto-and cross-correlations of frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2004, 50(9): 2149-2154.
|
Peng D Y, Niu X H, Tang X H, et al.. The average Hamming correlation for the cubic polynomial hopping sequences[C]. International Conference on Wireless Communications and Mobile Computing, Crete, Greece, 2008: 464-469.
|
Ding C S and Yin J X. Sets of optimal frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2008, 54(8): 3741-3745.
|
Zhang Y, Ke P H, and Zhang S Y. Optimal frequency-hopping sequences based on cyclotomy[C]. First International Workshop on Education Technology and Computer Science, Wuhan, China, 2009: 1122-1126.
|
Zhou Z C, Tang X H, Peng D Y, et al.. New constructions for optimal sets of frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2011, 57(6): 3831-3840.
|
Zeng X Y, Cai H, Tang X H, et al.. Optimal frequency hopping sequences of odd length[J]. IEEE Transactions on Information Theory, 2013, 59(5): 3237-3248.
|
Ren W L, Fu F W, and Zhou Z C. New sets of frequency-hopping sequences with optimal Hamming correlation[J]. Designs, Codes and Cryptography, 2014, 72(2): 423-434.
|
刘方, 彭代渊. 一类具有最优平均汉明相关特性的跳频序列族[J]. 电子与信息学报, 2010, 32(5): 1257-1261.
|
Liu F and Peng D Y. A class of frequency-hopping sequence family with optimal average Hamming correlation property[J]. Journal of Electronics Information Technology, 2010, 32(5): 1257-1261.
|
Liu F, Peng D Y, and Zhou Z C. A new frequency-hopping sequence set based upon generalized cyclotomy[J]. Designs, Codes and Cryptography, 2013, 69(2): 247-259.
|
柯品惠, 章海辉, 张胜元. 新的具有最优平均汉明相关性的跳频序列族[J]. 通信学报, 2012, 33(9): 168-175.
|
Ke P H, Zhang H H, and Zhang S Y. New class of frequency-hopping sequence set with optimal average Hamming correlation property[J]. Journal on Communications, 2012, 33(9): 168-175.
|
Zhang A X, Zhou Z C, and Feng K Q. A lower bound on the average Hamming correlation of frequency-hopping sequence sets[J]. Advances in Mathematics of Communications, 2015, 9(1): 55-62.
|
Kumar P V. Frequency-hopping code sequence designs having large linear span[J]. IEEE Transactions on Information Theory, 1988, 34(1): 146-151.
|
Chung J H and Yang K. A new class of balanced near-perfect nonlinear mappings and its application to sequence design[J]. IEEE Transactions on Information Theory, 2013, 59(2): 1090-1097.
|
Agoh T, Dilcher K, and Skula L. Fermat quotients for composite moduli[J]. Journal of Number Theory, 1997, 66(1): 29-50.
|
Chen Z X. Trace representation and linear complexity of binary sequences derived from Fermat quotients[J]. Science China, 2014, 57(11): 1-10.
|
Peng D Y, Peng T, and Fan P Y. Generalised class of cubic frequency-hopping sequences with large family size[J]. IEE Proceedings-Communications, 2005, 152(6): 897-902.
|
Peng D Y, Peng T, Tang X H, et al.. A class of optimal frequency hopping sequences based upon the theory of power residues[C]. Sequences and Their Applications (SETA 2008), Lexington, KY, USA, 2008: 188-196.
|