高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分圆法的一类素数平方周期跳频序列族

徐善顶 曹喜望 许广魁

徐善顶, 曹喜望, 许广魁. 基于分圆法的一类素数平方周期跳频序列族[J]. 电子与信息学报, 2015, 37(10): 2460-2465. doi: 10.11999/JEIT150168
引用本文: 徐善顶, 曹喜望, 许广魁. 基于分圆法的一类素数平方周期跳频序列族[J]. 电子与信息学报, 2015, 37(10): 2460-2465. doi: 10.11999/JEIT150168
Xu Shan-ding, Cao Xi-wang, Xu Guang-kui. Class of Optimal Frequency-hopping Sequences Set withthe Square of Prime Length Based on Cyclotomy[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2460-2465. doi: 10.11999/JEIT150168
Citation: Xu Shan-ding, Cao Xi-wang, Xu Guang-kui. Class of Optimal Frequency-hopping Sequences Set withthe Square of Prime Length Based on Cyclotomy[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2460-2465. doi: 10.11999/JEIT150168

基于分圆法的一类素数平方周期跳频序列族

doi: 10.11999/JEIT150168
基金项目: 

国家自然科学基金(11371011)和南京工程学院校级科研基金 (QKJA201307)

Class of Optimal Frequency-hopping Sequences Set withthe Square of Prime Length Based on Cyclotomy

Funds: 

The National Natural Science Foundation of China (11371011)

  • 摘要: 最大汉明相关与平均汉明相关是评价跳频序列族性能的两个重要参数。该文首先给出了源于Fermat商的广义分圆类的性质;其次,基于此广义分圆法构造了一类 Zp上的长度为p2 ,序列族的大小为p 的跳频序列族;最后证明了该跳频序列族关于最大汉明相关界与平均汉明相关界都是最优的。
  • Lempel A and Greenberger H. Families of sequences with optimal Hamming correlation properties[J]. IEEE Transactions on Information Theory, 1974, 20(1): 90-94.
    Peng D Y and Fan P Z. Lower bounds on the Hamming auto-and cross-correlations of frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2004, 50(9): 2149-2154.
    Peng D Y, Niu X H, Tang X H, et al.. The average Hamming correlation for the cubic polynomial hopping sequences[C]. International Conference on Wireless Communications and Mobile Computing, Crete, Greece, 2008: 464-469.
    Ding C S and Yin J X. Sets of optimal frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2008, 54(8): 3741-3745.
    Zhang Y, Ke P H, and Zhang S Y. Optimal frequency-hopping sequences based on cyclotomy[C]. First International Workshop on Education Technology and Computer Science, Wuhan, China, 2009: 1122-1126.
    Zhou Z C, Tang X H, Peng D Y, et al.. New constructions for optimal sets of frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2011, 57(6): 3831-3840.
    Zeng X Y, Cai H, Tang X H, et al.. Optimal frequency hopping sequences of odd length[J]. IEEE Transactions on Information Theory, 2013, 59(5): 3237-3248.
    Ren W L, Fu F W, and Zhou Z C. New sets of frequency-hopping sequences with optimal Hamming correlation[J]. Designs, Codes and Cryptography, 2014, 72(2): 423-434.
    刘方, 彭代渊. 一类具有最优平均汉明相关特性的跳频序列族[J]. 电子与信息学报, 2010, 32(5): 1257-1261.
    Liu F and Peng D Y. A class of frequency-hopping sequence family with optimal average Hamming correlation property[J]. Journal of Electronics Information Technology, 2010, 32(5): 1257-1261.
    Liu F, Peng D Y, and Zhou Z C. A new frequency-hopping sequence set based upon generalized cyclotomy[J]. Designs, Codes and Cryptography, 2013, 69(2): 247-259.
    柯品惠, 章海辉, 张胜元. 新的具有最优平均汉明相关性的跳频序列族[J]. 通信学报, 2012, 33(9): 168-175.
    Ke P H, Zhang H H, and Zhang S Y. New class of frequency-hopping sequence set with optimal average Hamming correlation property[J]. Journal on Communications, 2012, 33(9): 168-175.
    Zhang A X, Zhou Z C, and Feng K Q. A lower bound on the average Hamming correlation of frequency-hopping sequence sets[J]. Advances in Mathematics of Communications, 2015, 9(1): 55-62.
    Kumar P V. Frequency-hopping code sequence designs having large linear span[J]. IEEE Transactions on Information Theory, 1988, 34(1): 146-151.
    Chung J H and Yang K. A new class of balanced near-perfect nonlinear mappings and its application to sequence design[J]. IEEE Transactions on Information Theory, 2013, 59(2): 1090-1097.
    Agoh T, Dilcher K, and Skula L. Fermat quotients for composite moduli[J]. Journal of Number Theory, 1997, 66(1): 29-50.
    Chen Z X. Trace representation and linear complexity of binary sequences derived from Fermat quotients[J]. Science China, 2014, 57(11): 1-10.
    Peng D Y, Peng T, and Fan P Y. Generalised class of cubic frequency-hopping sequences with large family size[J]. IEE Proceedings-Communications, 2005, 152(6): 897-902.
    Peng D Y, Peng T, Tang X H, et al.. A class of optimal frequency hopping sequences based upon the theory of power residues[C]. Sequences and Their Applications (SETA 2008), Lexington, KY, USA, 2008: 188-196.
  • 加载中
计量
  • 文章访问数:  1272
  • HTML全文浏览量:  131
  • PDF下载量:  418
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-29
  • 修回日期:  2015-05-29
  • 刊出日期:  2015-10-19

目录

    /

    返回文章
    返回