高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种在线时间序列预测的核自适应滤波器向量处理器

庞业勇 王少军 彭宇 彭喜元

庞业勇, 王少军, 彭宇, 彭喜元. 一种在线时间序列预测的核自适应滤波器向量处理器[J]. 电子与信息学报, 2016, 38(1): 53-62. doi: 10.11999/JEIT150157
引用本文: 庞业勇, 王少军, 彭宇, 彭喜元. 一种在线时间序列预测的核自适应滤波器向量处理器[J]. 电子与信息学报, 2016, 38(1): 53-62. doi: 10.11999/JEIT150157
PANG Yeyong, WANG Shaojun, PENG Yu, PENG Xiyuan. A Kernel Adaptive Filter Vector Processor for Online Time Series Prediction[J]. Journal of Electronics & Information Technology, 2016, 38(1): 53-62. doi: 10.11999/JEIT150157
Citation: PANG Yeyong, WANG Shaojun, PENG Yu, PENG Xiyuan. A Kernel Adaptive Filter Vector Processor for Online Time Series Prediction[J]. Journal of Electronics & Information Technology, 2016, 38(1): 53-62. doi: 10.11999/JEIT150157

一种在线时间序列预测的核自适应滤波器向量处理器

doi: 10.11999/JEIT150157
基金项目: 

国家自然科学基金(61571160/F011305),中央高校基本科研业务费专项资金资助(HIT.NSRIF.201615)

A Kernel Adaptive Filter Vector Processor for Online Time Series Prediction

Funds: 

The National Natural Science Foundation of China (61571160/F011305), Fundamental Research Funds for the Central Universities (HIT.NSRIF.201615)

  • 摘要: 针对信息物理融合系统中的在线时间序列预测问题,该文选择计算复杂度低且具有自适应特点的核自适应滤波器(Kernel Adaptive Filter, KAF)方法与FPGA计算系统相结合,提出一种基于FPGA的KAF向量处理器解决思路。通过多路并行、多级流水线技术提高了处理器的计算速度,降低了功耗和计算延迟,并采用微码编程提高了设计的通用性和可扩展性。该文基于该向量处理器实现了经典的KAF方法,实验表明,在满足计算精度要求的前提下,该向量处理器与CPU相比,最高可获得22倍计算速度提升,功耗降为1/139,计算延迟降为1/26。
  • 王中杰, 谢璐璐. 信息物理融合系统研究综述[J]. 自动化学报, 2011, 37(10): 1157-1166.
    WANG Zhongjie and XIE Lulu. Cyber-physical system: a survey[J]. Acta Automatica Sinica, 2011, 37(10): 1157-1166.
    周建宝, 王少军, 马丽萍, 等. 可重构卫星锂离子电池剩余寿命预测系统研究[J]. 仪器仪表学报, 2013, 34(9): 2034-2044.
    ZHOU Jianbao, WANG Shaojun, MA Li-ping, et al. Study on the reconfigurable remaining useful life estimation system for satellite lithium-ion battery[J]. Chinese Journal of Scientific Instrument, 2013, 34(9): 2034-2044.
    王少军. 时间序列预测的可重构计算研究[D]. [博士论文], 哈尔滨工业大学, 2012.
    WANG Shaojun. Research on reconfigurable computing for time series forecasting[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2012.
    曹葵康. 支持向量机加速方法及应用研究[D]. [博士论文], 浙江大学, 2010.
    CAO Kuikang. Acceleration and application of support vector machines[D]. [Ph.D. dissertation], Zhejiang University, 2010.
    江洁, 凌思睿. 一种投票式并行RANSAC算法及其FPGA实现[J]. 电子与信息学报, 2014, 36(5): 1145-1150. doi: 10.3724/ SP.J.1146.2013.00962.
    JIANG Jie and LING Sirui. Parallel voting RANSAC and its implementation on FPGA[J]. Journal of Electronics Information Technology, 2014, 36(5): 1145-1150. doi: 10. 3724/SP.J.1146.2013.00962.
    兰亚柱, 杨海钢, 林郁. 动态自适应低密度奇偶校验码译码器的FPGA实现[J]. 电子与信息学报, 2015, 37(8): 1937-1943. doi: 10.11999/JEIT141609.
    LAN Yazhu, YANG Haigang, and LIN Yu. Design of dynamic adaptive LDPC decoder based on FPGA[J]. Journal of Electronics Information Technology, 2015, 37(8): 1937-1943. doi: 10.11999/JEIT141609.
    PAPADONIKOLAKIS M. A scalable FPGA architecture for non-linear svm training[C]. Proceeding of 2008 International Conference on Field Programmable Technology, Taipei, China, 2008: 337-340.
    ANGUITA D, CARLINO L, GHIO A, et al. A FPGA core generator for embedded classification systems[J]. Journal of Circuits, Systems and Computers, 2011, 20(2): 263-282.
    MAJUMDAR A, CADAMBI S, BECCHI M, et al. A massively parallel, energy efficient programmable accelerator for learning and classification[J]. ACM Transactions on Architecture and Code Optimization, 2012, 9(1): 6:1-6:30.
    KOZYRAKIS C and PATTERSON D. Vector vs. superscalar and vliw architectures for embedded multimedia benchmarks[C]. Proceeding of 35th Annual IEEE/ACM International Symposium on Microarchitecture, Califonia, USA, 2002: 283-293.
    YIANNACOURAS P, STEFFAN J G, and ROSE J. Portable, flexible, and scalable soft vector processors[J]. IEEE Transactions on Very Large Scale Integration Systems, 2012, 20(8): 1429-1442.
    YU J, EAGLESTON C, CHOU C H Y, et al. Vector processing as a soft processor accelerator[J]. ACM Transactions on Reconfigurable Technology and Systems, 2009, 2(2): 12:1-12:34.
    VAN VAERENBERGH S, VIA J, and SANTAMARIA I. A sliding-window kernel RLS algorithm and its application to nonlinear channel identification[C]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006: 789-792.
    PANG Yeyong, WANG Shaojun, PENG Yu, et al. A low latency kernel recursive least squares processor using FPGA technology[C]. 2013 International Conference on Field- Programmable Technology (FPT), Kyoto, Japan, 2013: 144-151.
    VAN VAERENBERGH S, SANTAMARIA I, WEIFENG L, et al. Fixed- budget kernel recursive least-squares[C]. 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Dalas, USA, 2010: 1882-1885.
    RICHARD C, BERMUDEZ J C M, and HONEINE P. Online prediction of time series data with kernels[J]. IEEE Transactions on Signal Processing, 2009, 57(3): 1058-1067.
    KRUIF B J and VRIES T J A. Pruning error minimization in least squares support vector machines[J]. IEEE Transactions on Neural Networks, 2003, 14(3): 696-702.
    LEONG P H W and LEUNG I K H. A microcoded elliptic curve processor using FPGA technology[J]. IEEE Transactions on VLSI Systems, 2002, 10(5): 550-559.
    CHAU T C P, KUREK M, TARGETT J S, et al. SMCGen: Generating reconfigurable design for sequential Monte Carlo applications[C]. Proceeding of 22nd IEEE Symposium on
    Field-Programmable Custom Computing Machines (FCCM), Boston, USA, 2014: 141-148.
    VAN VAERENBERGH S and SANTAMARIA I. A comparative study of kernel adaptive filtering algorithms[C]. Proceedings of 2013 IEEE Digital Signal Processing and Signal Processing Education Meeting, California, USA, 2013: 181-186.
  • 加载中
计量
  • 文章访问数:  1675
  • HTML全文浏览量:  156
  • PDF下载量:  723
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-27
  • 修回日期:  2015-09-28
  • 刊出日期:  2016-01-19

目录

    /

    返回文章
    返回