高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度特征表达与学习的视觉跟踪算法研究

李寰宇 毕笃彦 杨源 查宇飞 覃兵 张立朝

李寰宇, 毕笃彦, 杨源, 查宇飞, 覃兵, 张立朝. 基于深度特征表达与学习的视觉跟踪算法研究[J]. 电子与信息学报, 2015, 37(9): 2033-2039. doi: 10.11999/JEIT150031
引用本文: 李寰宇, 毕笃彦, 杨源, 查宇飞, 覃兵, 张立朝. 基于深度特征表达与学习的视觉跟踪算法研究[J]. 电子与信息学报, 2015, 37(9): 2033-2039. doi: 10.11999/JEIT150031
Li Huan-yu, Bi Du-yan, Yang Yuan, Zha Yu-fei, Qin Bing, Zhang Li-chao. Research on Visual Tracking Algorithm Based on Deep Feature Expression and Learning[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2033-2039. doi: 10.11999/JEIT150031
Citation: Li Huan-yu, Bi Du-yan, Yang Yuan, Zha Yu-fei, Qin Bing, Zhang Li-chao. Research on Visual Tracking Algorithm Based on Deep Feature Expression and Learning[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2033-2039. doi: 10.11999/JEIT150031

基于深度特征表达与学习的视觉跟踪算法研究

doi: 10.11999/JEIT150031
基金项目: 

国家自然科学基金(61202339, 61472443)和航空科学基金(20131996013)

Research on Visual Tracking Algorithm Based on Deep Feature Expression and Learning

  • 摘要: 该文针对视觉跟踪中运动目标的鲁棒性跟踪问题,将深度学习引入视觉跟踪领域,提出一种基于多层卷积滤波特征的目标跟踪算法。该算法利用分层学习得到的主成分分析(PCA)特征向量,对原始图像进行多层卷积滤波,从而提取出图像更深层次的抽象表达,然后利用巴氏距离进行特征相似度匹配估计,进而结合粒子滤波算法实现目标跟踪。结果表明,这种多层卷积滤波提取到的特征能够更好地表达目标,所提跟踪算法对光照变化、遮挡、异面旋转、摄像机抖动都具有很好的不变性,对平面内旋转也具有一定的不变性,在具有此类特点的视频序列上表现出非常好的鲁棒性。
  • Li X, Hu W M, and Shen C H. A survey of appearance models in visual object tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 5801-5848.
    Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
    Clement F, Camille C, Laurent N, et al.. Learning hierarchical features for scene labeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1915-1929.
    Alex K, Sutskever I, and Hinton G E. ImageNet classification with deep convolutional neural networks[C]. Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, 2012: 748-764.
    Zhou S S, Chen Q C, and Wang X L. Convolutional deep networks for visual data classification[J]. Neural Processing Letters, 2013, 38(11): 17-27.
    Abdel-Hamid O, Mohamed A R, Jiang H, et al.. Convolutional neural networks for speech recognition[J]. ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533-1545.
    Chen X Y, Xiang S M, and Li C L. Vehicle detection in satellite images by hybrid deep convolutional neural networks [J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2014, 11(10): 1797-1801.
    Evgeny A S, Denis M T, and Serge N A. Comparison of regularization methods for imagenet classification with deep convolutional neural networks[J]. AASRI Procedia, 2014, 6(8): 89-94.
    Baldi P and Hornik K. Neural networks and principal component analysis: learning from examples without local minima[J]. Neural Networks, 1989, 2(1): 53-58.
    Ross D, Lim Jong-woo, and Lin Ruei-Sung. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1): 125-141.
    姚志均. 一种新的空间直方图相似性度量方法及其在目标跟踪中的应用[J]. 电子与信息学报, 2013, 35(7): 1644-1649.
    Yao Z J. A new spatiogram similarity measure method and its application to object tracking[J]. Journal of Electronics Information Technology, 2013, 35(7): 1644-1649.
    Zhang K H, Zhang L, and Yang M H. Real-time compressive tracking[C]. Proceedings of Europe Conference on Computer Vision, Florence, 2012: 864-877.
    Sevilla-Lara L and Learned-Miller E. Distribution fields for tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 1910-1917.
    Shaul O, Aharon B H, and Dan L. Locally orderless tracking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1940-1947.
    Henriques J F, Caseiro R, and Martins P. High-speed tracking with kernelized correlation filters[J]. IEEE
    Transactions on Pattern Analysis and Machine Intelligence, 2015, DOI: 10.1109/TPAMI.2014.2345390.
    Hare S, Saffari A, and Torr P H S. Struck:structured output tracking with kernels[C]. Proceedings of IEEE International Conference on Computer Vision, Colorado, 2011: 263-270.
    Thang Ba Dinh, Nam Vo, and Medioni G. Context tracker: exploring supporters and distracters in unconstrained environments[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 1177-1184.
    Liu Bai-yang, Huang Jun-zhou, and Yang Lin. Robust tracking using local sparse appearance model and K-selection [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2011: 1313-1320.
    Junseok K and Kyoung M. Tracking by sampling trackers[C]. Proceedings of IEEE International Conference on Computer Vision, Colorado, 2011: 1195-1202.
    Amit Adam, Ehud Rivlin, and Ilan Shimshoni. Robust fragments-based tracking using the integral histogram[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Colorado, 2006: 798-805.
    Dorin Comaniciu, Visvanathan Ramesh, and Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 加载中
计量
  • 文章访问数:  2183
  • HTML全文浏览量:  211
  • PDF下载量:  2032
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-06
  • 修回日期:  2015-04-28
  • 刊出日期:  2015-09-19

目录

    /

    返回文章
    返回