高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯模型的骨架裁剪方法

秦红星 孙颖

秦红星, 孙颖. 基于贝叶斯模型的骨架裁剪方法[J]. 电子与信息学报, 2015, 37(9): 2069-2075. doi: 10.11999/JEIT150003
引用本文: 秦红星, 孙颖. 基于贝叶斯模型的骨架裁剪方法[J]. 电子与信息学报, 2015, 37(9): 2069-2075. doi: 10.11999/JEIT150003
Qin Hong-xing, Sun Ying. Approach of Skeleton Pruning with Bayesian Model[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2069-2075. doi: 10.11999/JEIT150003
Citation: Qin Hong-xing, Sun Ying. Approach of Skeleton Pruning with Bayesian Model[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2069-2075. doi: 10.11999/JEIT150003

基于贝叶斯模型的骨架裁剪方法

doi: 10.11999/JEIT150003
基金项目: 

国家自然科学基金青年科学基金(61100113),国家教育部留学归国基金教外司留 [2012]940号,重庆市首批青年骨干教师项目(渝教人(2011)31号),重庆市基础与前沿研究计划项目(cstc2013jcyjA40062),重庆邮电大学学科引进人才基金(A2010-12)和重庆市研究生科研创新项目(CYS14142)

Approach of Skeleton Pruning with Bayesian Model

  • 摘要: 针对大部分骨架计算方法对轮廓噪声的极端敏感性问题,该文提出一种基于贝叶斯模型的骨架裁剪方法。该方法利用贝叶斯理论对骨架及其生长过程进行建模,进而通过对模型的迭代优化实现骨架候选分支的筛选裁剪。由于已有的重建误差率在分析骨架时不能很好地体现骨架简洁程度,故该文在骨架重建误差率的基础上综合考虑骨架简洁度,提出骨架有效率的概念来对骨架做客观定量分析。实验结果表明该文算法对轮廓噪声具有较好的鲁棒性,且裁剪出的骨架相比现有算法得到的骨架结构更加简单,对形状描述更加准确。
  • Gong Y, Lazebnik S, Gordo A, et al.. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916-2929.
    Kim V G, Chaudhuri S, Guibas L, et al.. Shape2pose: Human-centric shape analysis[J]. ACM Transactions on Graphics (TOG), 2014, 33(4): 70-79.
    Huang S S, Shamir A, Shen C H, et al.. Qualitative organization of collections of shapes via quartet analysis[J]. ACM Transactions on Graphics (TOG), 2013, 32(4): 96-96.
    Blum H. Biological shape and visual science (Part I)[J]. Journal of Theoretical Biology, 1973, 38(2): 205-287.
    Xu J. A generalized morphological skeleton transform using both internal and external skeleton points[J]. Pattern Recognition, 2014, 47(8): 2607-2620.
    Song Z, Yu J, Zhou C, et al.. Skeleton correspondence construction and its applications in animation style reusing[J]. Neurocomputing, 2013, 120(10): 461-468.
    Al Nasr K, Liu C, Rwebangira M, et al.. Intensity-based skeletonization of cryoEM gray-scale images using a true segmentation-free algorithm[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2013, 10(5): 1289-1298.
    Mayya N and Rajan V T. Voronoi diagrams of polygons: A framework for shape representation[J]. Journal of Mathematical Imaging and Vision, 1996, 6(4): 355-378.
    Daz-Pernil D, Pea-Cantillana F, and Gutirrez-Naranjo M A. Cellular Automata in Image Processing and Geometry[M]. Berlin: Springer International Publishing, 2014: 47-63.
    Choi W P, Lam K M, and Siu W C. Extraction of the Euclidean skeleton based on a connectivity criterion[J]. Pattern Recognition, 2003, 36(3): 721-729.
    Sobiecki A, Yasan H C, Jalba A C, et al.. Mathematical Morphology and Its Applications to Signal and Image Processing[M]. Berlin: Springer International Publishing, 2013: 425-439.
    Babu G R M, Srikrishna A, Challa K, et al.. An error free compression algorithm using morphological decomposition[C]. 2012 International Conference on Recent Advances in Computing and Software Systems (RACSS), Chennai, 2012: 33-36.
    Karimipour F and Ghandehari M. Transactions on Computational Science XX[M]. Berlin: Springer International Publishing, 2013: 138-157.
    Jalba A C, Kustra J, and Telea A C. Surface and curve skeletonization of large 3D models on the GPU[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1495-1508.
    Karimov A, Mistelbauer G, Schmidt J, et al.. ViviSection: skeleton-based volume editing[C]. Computer Graphics Forum, Leipzig, 2013, 32(3pt4): 461-470.
    Cicconet M, Geiger D, Gunsalus K C, et al.. Mirror symmetry histograms for capturing geometric properties in images[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, 2014: 2981-2986.
    Mokhtarian F and Mackworth A K. A theory of multiscale, curvature-based shape representation for planar curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(8): 789-805.
    Ogniewicz R L and Kbler O. Hierarchic voronoi skeletons[J]. Pattern Recognition, 1995, 28(3): 343-359.
    Couprie M, Coeurjolly D, and Zrour R. Discrete bisector function and Euclidean skeleton in 2D and 3D[J]. Image and Vision Computing, 2007, 25(10): 1543-1556.
    Bai X, Latecki L J, and Liu W Y. Skeleton pruning by contour partitioning with discrete curve evolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 449-462.
    Sebastian T B, Klein P N, and Kimia B B. Recognition of shapes by editing their shock graphs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 550-571.
    Shen W, Bai X, Yang X W, et al.. Skeleton pruning as trade-off between skeleton simplicity and reconstruction error[J]. Science China Information Sciences, 2013, 56(4): 1-14.
  • 加载中
计量
  • 文章访问数:  1138
  • HTML全文浏览量:  100
  • PDF下载量:  749
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-05
  • 修回日期:  2015-05-13
  • 刊出日期:  2015-09-19

目录

    /

    返回文章
    返回