高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时序特性的自适应增量主成分分析的视觉跟踪

蔡自兴 彭梦 余伶俐

蔡自兴, 彭梦, 余伶俐. 基于时序特性的自适应增量主成分分析的视觉跟踪[J]. 电子与信息学报, 2015, 37(11): 2571-2577. doi: 10.11999/JEIT141646
引用本文: 蔡自兴, 彭梦, 余伶俐. 基于时序特性的自适应增量主成分分析的视觉跟踪[J]. 电子与信息学报, 2015, 37(11): 2571-2577. doi: 10.11999/JEIT141646
Cai Zi-xing, Peng Meng, Yu Ling-li. Adaptive Incremental Principal Component Analysis Visual Tracking Method Based on Temporal Characteristics[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2571-2577. doi: 10.11999/JEIT141646
Citation: Cai Zi-xing, Peng Meng, Yu Ling-li. Adaptive Incremental Principal Component Analysis Visual Tracking Method Based on Temporal Characteristics[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2571-2577. doi: 10.11999/JEIT141646

基于时序特性的自适应增量主成分分析的视觉跟踪

doi: 10.11999/JEIT141646
基金项目: 

国家自然科学基金重大研究计划(90820302)和国家自然科学基金(61175064, 61403426, 61403423)

Adaptive Incremental Principal Component Analysis Visual Tracking Method Based on Temporal Characteristics

Funds: 

The Major Research Project of the National Natural Science Foundation of China (90820302)

  • 摘要: 当前基于增量主成分分析(PCA)学习的跟踪方法存在两个问题,首先,观测模型没有考虑目标外观变化的连续性;其次,当目标外观的低维流行分布为非线性结构时,基于固定频率更新模型的增量PCA学习不能适应子空间模型的变化。为此,该文首先基于目标外观变化的连续性,在子空间模型中提出更合理的目标先验概率分布假设。然后,根据当前跟踪结果与子空间模型之间的匹配程度,自适应调整遗忘比例因子,使得子空间模型更能适应目标外观变化。实验结果验证了所提方法能有效提高跟踪的鲁棒性和精度。
  • Ross D A, Lim J W, Lin R S, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.
    Bao C L, Wu Y, Linh H B, et al.. Real time robust L1 tracker using accelerated proximal gradient approach[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, 2012: 1830-1837.
    MeI X and Ling H B. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259-2272.
    Babenko B, Yang M H, Belongie S, et al.. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
    Grabner H and Bischof H. On-line boosting and vision[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006, 1: 260-267.
    Avidan S. Ensemble tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271.
    Yang M, Zhang C X, Wu Y W, et al.. Robust object tracking via online multiple instance metric learning[C]. Electronic Proceedings of the 2013 IEEE International Conference on Multimedia and Expo Workshops, San Jose, 2013: 1-4.
    Zhong Wei, Lu Hu-chuan, and Yang M. Robust object tracking via sparse collaborative appearance model[J]. IEEE Transactions on Image Processing, 2014, 23(5): 2356-2368.
    吕卓纹, 王科俊, 李宏宇, 等. 融合Camshift的在线Adaboost目标跟踪算法[J].?中南大学学报(自然科学版), 2013, 44(2): 232-238.
    Lu Zhuo-wen, Wang Ke-jun, Li Hong-yu, et al.. Online Adaboost target tracking algorithm combined fused with Camshift[J]. Journal of Central South University(Science and Technology), 2013, 44(2): 232-238.
    钱诚, 张三元. 适用于目标跟踪的加权增量子空间学习算法[J]. 浙江大学学报(工学版), 2011, 45(12): 2240-2246.
    Qian Cheng and Zhang San-yuan. Weighted incremental subspace learning algorithm suitable for object tracking[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(12): 2240-2246.
    Cruz-Mota J, Bierlaire M, and Thiran J. Sample and pixel weighting strategies for robust incremental visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(5): 898-911.
    Xie Yuan, Zhang Wen-sheng, Qu Yan-yun, et al.. Discriminative subspace learning with sparse representation view-based model for robust visual tracking[J]. Pattern Recognition, 2014, 47(3): 1383-1394.
    Ji Zhang-jian, Wang Wei-qiang, and Xu Ning. Robust object tracking via incremental subspace dynamic sparse model[C]. Proceedings of IEEE International Conference on Multimedia and Expo, Chengdu, 2014: 1-6.
    Guo Yan-wen, Chen Ye, and Tang Feng. Object tracking using learned feature manifolds[J]. Computer Vision and Image Understanding, 2014, 118(1): 128-139.
    Chen Wei-hua, Cao Li-jun, and Zhang Jun-ge. An adaptive combination of multiple features for robust tracking in real scene[C]. Proceedings of the IEEE International Conference on Computer Vision, Sydney, 2013: 129-136.
    Yang Han-xuan, Song Zhan, and Chen Ru-nen. An incremental PCA-HOG descriptor for robust visual hand tracking[J]. Lecture Notes in Computer Science, 2010, 6553: 687-695.
    Moghaddam B and Pentland A. Probabilistic visual learning for object detection[C]. Proceedings of the IEEE International Conference on Computer Vision, Cambridge, 1995: 786-793.
    Chen Feng, Wang Qing, Wang Song, et al.. Object tracking via appearance modeling and sparse representation[J]. Image and Vision Computing, 2011, 29(11): 787-796.
    Wang Dong, Lu Hu-chuan, and Yang M H . Online object tracking with sparse prototypes[J]. IEEE Transactions on Image Processing, 2013, 22(1): 314-325.
    Wang Qing, Chen Feng, Xu Wen-li, et al.. Object tracking via partial least squares analysis[J]. IEEE Transactions on Image Processing, 2012, 21(10): 4454-4465.
  • 加载中
计量
  • 文章访问数:  1412
  • HTML全文浏览量:  118
  • PDF下载量:  1075
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-25
  • 修回日期:  2015-07-20
  • 刊出日期:  2015-11-19

目录

    /

    返回文章
    返回