高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于块稀疏贝叶斯模型的ISAR成像方法

吴称光 邓彬 苏伍各 王宏强 秦玉亮

吴称光, 邓彬, 苏伍各, 王宏强, 秦玉亮. 基于块稀疏贝叶斯模型的ISAR成像方法[J]. 电子与信息学报, 2015, 37(12): 2941-2947. doi: 10.11999/JEIT141624
引用本文: 吴称光, 邓彬, 苏伍各, 王宏强, 秦玉亮. 基于块稀疏贝叶斯模型的ISAR成像方法[J]. 电子与信息学报, 2015, 37(12): 2941-2947. doi: 10.11999/JEIT141624
Wu Cheng-guang, Deng Bin, Su Wu-ge, Wang Hong-qiang, Qin Yu-liang. ISAR Imaging Method Based on the Bayesian Group-sparse Modeling[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2941-2947. doi: 10.11999/JEIT141624
Citation: Wu Cheng-guang, Deng Bin, Su Wu-ge, Wang Hong-qiang, Qin Yu-liang. ISAR Imaging Method Based on the Bayesian Group-sparse Modeling[J]. Journal of Electronics & Information Technology, 2015, 37(12): 2941-2947. doi: 10.11999/JEIT141624

基于块稀疏贝叶斯模型的ISAR成像方法

doi: 10.11999/JEIT141624
基金项目: 

国家自然科学基金(61171133),国家自然科学青年基金(61101182, 61302148)

ISAR Imaging Method Based on the Bayesian Group-sparse Modeling

Funds: 

The National Natural Science Foundation of China (61171133)

  • 摘要: 传统ISAR稀疏成像主要针对独立散射点散射系数的重构问题,然而实际情况下目标散射点之间并不是独立存在的,而是以区域或块的形式存在,在该情形下利用常用的稀疏重构算法并不能完全地刻画块状目标的真实结构,因此该文考虑采用块稀疏重构算法进行目标散射系数重建。基于块稀疏贝叶斯模型和变分推理的重构方法(VBGS),包含了稀疏贝叶斯学习(SBL)方法中参数学习的优点,其利用分层的先验分布来表征未知信号的稀疏块状信息,因而相对于现有的恢复算法能够更好地重建块稀疏信号。该方法基于变分贝叶斯推理原理,根据观测量能自动地估计信号未知参数,而无需人工参数设置。针对稀疏块状目标,该文结合压缩感知(CS)理论将VBGS方法用于ISAR成像,仿真实验成像结果表明该方法优于传统的成像结果,适合于具有块状结构的ISAR目标成像。
  • Candes E J and Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
    Zhang Xiao-hua, Bai Ting, Meng Hong-yun, et al.. Compressive sensing based ISAR imaging via the combination of the sparsity and nonlocal total variation[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(5): 990-994.
    Rao Wei, Li Gang, and Wang Xi-qin. Parametric sparse representation method for SAR imaging of rotating targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 910-919.
    吴敏, 邢孟道, 张磊. 基于压缩感知的二维联合超分辨 ISAR 成像算法[J]. 电子与信息学报, 2014, 36(1): 187-193.
    Wu Min, Xing Meng-dao, and Zhang Lei. Two dimensional joint super-resolution ISAR imaging algorithm based on compressive sensing[J]. Journal of Electronics Information Technology, 2014, 36(1): 187-193.
    苏伍各, 王宏强, 邓彬, 等. 基于方差成分扩张压缩的稀疏贝叶斯ISAR成像方法[J]. 电子与信息学报, 2014, 36(7): 1525-1531.
    Su Wu-ge, Wang Hong-qiang, Deng Bing, et al.. Sparse Bayesian representation of the ISAR imaging method based on ExCoV[J]. Journal of Electronics Information Technology, 2014, 36(7): 1525-1531.
    Yang Jun-gang, Huang Xiao-tao, Thompson J, et al.. Compressed sensing radar imaging with compensation of observation position error[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 4608-4620.
    Liu Zhen, You Peng, Wei Xi-zhang, et al.. Dynamic ISAR imaging of maneuvering targets based on sequential SL0[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1041-1045.
    Figueiredo M A T, Nowak R D, and Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586597.
    Wipf D P and Rao B. Sparse Bayesian learning for basis selection[J]. IEEE Transactions on Signal Processing, 2004, 52(8): 2153-2164.
    Qiu Kun and Aleksandar D. Variance-component based sparse signal reconstruction and model selection[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 2935-2952.
    Eldar Y C and Mishali M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009, 55(11): 5302-5316.
    Meier L, Van De Geer S, and Buhlmann P. The group lasso for logistic regression[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2008, 70(1): 53-71.
    Stojnic M. L2/L1-optimization in block-sparse compressed sensing and its strong thresholds[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 350-357.
    Eldar Y C, Kuppinger P, and Bolcskei H. Block-sparse signals: Uncertainty relations and efficient recovery[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 30423054.
    Zhao Li-fan, Wang Lu, Bi Guo-an, et al.. An autofocus technique for high resolution inverse synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6392-6403.
    Liu Hong-chao, Jiu Bo, Liu Hong-wei, et al.. Super-resolution ISAR imaging based on sparse Bayesian learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5005-5013.
    Zhang Zhi-ling and Rao B D. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J]. IEEE Transactions on Signal Processing, 2013, 61(8): 2009-2015.
    Babacan S D, Nakajima S, and Do M N. Bayesian group sparse modeling and variational inference[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2906-2921.
  • 加载中
计量
  • 文章访问数:  1451
  • HTML全文浏览量:  92
  • PDF下载量:  758
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-18
  • 修回日期:  2015-10-19
  • 刊出日期:  2015-12-19

目录

    /

    返回文章
    返回