高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多任务复数因子分析模型的雷达高分辨距离像识别方法

和华 杜兰 徐丹蕾 刘宏伟

和华, 杜兰, 徐丹蕾, 刘宏伟. 基于多任务复数因子分析模型的雷达高分辨距离像识别方法[J]. 电子与信息学报, 2015, 37(10): 2307-2313. doi: 10.11999/JEIT141591
引用本文: 和华, 杜兰, 徐丹蕾, 刘宏伟. 基于多任务复数因子分析模型的雷达高分辨距离像识别方法[J]. 电子与信息学报, 2015, 37(10): 2307-2313. doi: 10.11999/JEIT141591
He Hua, Du Lan, Xu Dan-lei, Liu Hong-wei. Radar HRRP Target Recognition Method Based on Multi-task Learning and Complex Factor Analysis[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2307-2313. doi: 10.11999/JEIT141591
Citation: He Hua, Du Lan, Xu Dan-lei, Liu Hong-wei. Radar HRRP Target Recognition Method Based on Multi-task Learning and Complex Factor Analysis[J]. Journal of Electronics & Information Technology, 2015, 37(10): 2307-2313. doi: 10.11999/JEIT141591

基于多任务复数因子分析模型的雷达高分辨距离像识别方法

doi: 10.11999/JEIT141591
基金项目: 

国家自然科学基金(61271024, 61201296, 61322103),高等学校博士学科点专项科研基金(20130203110013)和陕西省自然科学基础研究计划(2015JZ016)

Radar HRRP Target Recognition Method Based on Multi-task Learning and Complex Factor Analysis

Funds: 

The National Natural Science Foundation of China (61271024, 61201296, 61322103)

  • 摘要: 传统的高分辨距离像(HRRP)统计识别方法大部分只使用雷达目标高分辨回波的幅值信息且需要大量的训练样本保证统计模型参数学习的精度。为了充分利用高分辨回波的相位信息,在雷达采样率有限、训练样本数不足的条件下保证统计识别的性能,该文提出一种多任务学习(MTL)复数因子分析(CFA)模型,将数据描述推广到复数域,将每个方位帧训练样本的统计建模视为单一的学习任务,各学习任务共享加载矩阵,利用贝塔伯努利(Beta-Bernoulli)稀疏先验自适应地选择各任务需要的因子,完成多任务的共同学习。基于实测数据的识别实验显示,与传统的单任务学习(STL)因子分析模型相比,该文提出的多任务因子分析模型具有更低的模型复杂度且在小样本条件下可以显著提高识别性能。
  • 张瑞, 牛威 寇鹏. 基于样本紧密度的雷达高分辨距离像识别方法研究[J]. 电子与信息学报, 2014, 36(3): 529-536.
    Zhang Rui, Niu Wei, and Kou Peng. Radar high resolution range profiles recognition based on the affinity[J]. Journal of Electronics Information Technology, 2014, 36(3): 529-536.
    张学峰, 王鹏辉, 冯博, 等. 基于多分类器融合的雷达高分辨距离像目标识别与拒判新方法[J]. 自动化学报, 2014, 40(2): 348-356.
    Zhang Xue-feng, Wang Peng-hui, Feng Bo, et al.. A new method to improve radar HRRP recognition and outlier rejection performances based on classifier combination[J]. Acta Automatica Sinica, 2014, 40(2): 348-356.
    张玉玺, 王晓丹, 姚旭, 等. 基于复数全极化HRRP的雷达目标识别[J]. 系统工程与电子技术, 2014, 36(2): 260-265.
    Zhang Yu-xi, Wang Xiao-dan, Yao Xu, et al.. Radar target recognition based on complex fully polarimeric HRRP[J]. Systems Engineering and Electronics, 2014, 36(2): 260-265.
    潘勉, 王鹏辉, 杜兰, 等. 基于 TSB-HMM 模型的雷达高分辨距离像目标识别方法[J]. 电子与信息学报, 2013, 35(7): 1547-1554.
    Pan Mian, Wang Peng-hui, Du Lan, et al.. Radar HRRP target recognition based on truncated stick-breaking hidden markov model[J], Journal of Electronics Information Technology, 2013, 35(7): 1547-1554.
    姚莉娜, 吴艳敏, 崔光照. 基于随机森林的雷达高分辨距离像目标识别新方法[J]. 郑州大学学报(工学版), 2014, 35(4): 105-108.
    Yao Li-na, Wu Yan-min, and Cui Guang-zhao. New method of radar high resolution range image target recognition based on random forest[J]. Journal of Zhengzhou University (Engineering Science), 2014, 35(4): 105-108.
    Jacobs S P and OSullivan J A. Automatic target recognition using sequences of high resolution radar range profiles[J]. IEEE Transactions on Aerospace Electronic Systems, 2000, 36(2): 364-380.
    Du L, Liu H, and Bao Z. Radar HRRP statistical recognition: parametric model and model selection[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1931-1944.
    Du L, Liu H, and Bao Z. A two-distribution compounded statistical model for radar HRRP target recognition[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2226-2238.
    Du L, Liu H, and Bao Z. A novel feature vector using complex HRRP for radar target recognition[J]. Lecture Notes in Computer Science, 2007, 4491: 1303-1309.
    王鹏辉, 杜兰, 刘宏伟. 基于复高斯模型的雷达高分辨距离像目标识别新方法[J]. 光学学报, 2014, 34(2): 275-284.
    Wang Peng-hui, Du Lan, and Liu Hong-wei. A new method based on complex Gaussian models for radar high resolution range profile target recognition[J]. Acta Optica Sinica, 2014, 34(2): 275-284.
    王鹏辉. 基于统计建模的雷达高分辨距离像目标识别方法研究[D]. [博士论文], 西安电子科技大学, 2012.
    Wang Peng-hui. Study of radar high resolution range profile target recognition based on statistical modeling[D]. [Ph.D dissertation], Xidian University, 2012.
    Xue Y, Liao X, and Carin L. Multi-task learning for classification with Dirichlet process priors[J]. The Journal of Machine Learning Research, 2007, 8: 35-63.
    Pan M, Du L, and Wang P. Multi-task hidden Markov modeling of spectrogram feature from radar high-resolution range profiles[J]. EURASIP Journal on Advances in Signal Processing, 2012(1): 1-17.
    Watanabe S. A widely applicable Bayesian information criterion[J]. The Journal of Machine Learning Research, 2013, 14(1): 867-897.
    Paisley J and Carin L. Nonparametric factor analysis with beta process priors[C]. Proceedings of the 26th ACM Annual International Conference on Machine Learning, 2009: 777-784.
    Ando T. Bayesian Model Selection and Statistical Modeling [M]. CRC Press, 2010, 43-96.
    Du L, Liu H, and Wang P. Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3546-3559.
  • 加载中
计量
  • 文章访问数:  1516
  • HTML全文浏览量:  163
  • PDF下载量:  448
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-11
  • 修回日期:  2015-06-29
  • 刊出日期:  2015-10-19

目录

    /

    返回文章
    返回