高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定系统鲁棒协方差交叉融合稳态Kalman滤波器

王雪梅 刘文强 邓自立

王雪梅, 刘文强, 邓自立. 不确定系统鲁棒协方差交叉融合稳态Kalman滤波器[J]. 电子与信息学报, 2015, 37(8): 1900-1905. doi: 10.11999/JEIT141515
引用本文: 王雪梅, 刘文强, 邓自立. 不确定系统鲁棒协方差交叉融合稳态Kalman滤波器[J]. 电子与信息学报, 2015, 37(8): 1900-1905. doi: 10.11999/JEIT141515
Wang Xue-mei, Liu Wen-qiang, Deng Zi-li. Robust Covariance Intersection Fusion Steady-state Kalman Filter for Uncertain Systems[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1900-1905. doi: 10.11999/JEIT141515
Citation: Wang Xue-mei, Liu Wen-qiang, Deng Zi-li. Robust Covariance Intersection Fusion Steady-state Kalman Filter for Uncertain Systems[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1900-1905. doi: 10.11999/JEIT141515

不确定系统鲁棒协方差交叉融合稳态Kalman滤波器

doi: 10.11999/JEIT141515
基金项目: 

国家自然科学基金(60874063, 60374026)

Robust Covariance Intersection Fusion Steady-state Kalman Filter for Uncertain Systems

  • 摘要: 针对带不确定模型参数和噪声方差的线性离散多传感器系统,基于极大极小鲁棒估值原理,该文提出一种鲁棒协方差交叉(CI)融合稳态Kalman滤波器。首先,用引入虚拟噪声补偿不确定模型参数,把模型参数和噪声方差两者不确定的多传感器系统转化为仅噪声方差不确定的系统。其次,应用Lyapunov方程证明局部鲁棒Kalman滤波器的鲁棒性,进而保证CI融合Kalman滤波的鲁棒性,且证明了CI融合器的鲁棒精度高于每个局部滤波器的鲁棒精度。最后,给出一个仿真例子来说明如何搜索不确定参数的鲁棒域,并验证所提出的鲁棒Kalman滤波器的优良性能。
  • Hall D L and Llinas J. An introduction to multisensor data fusion[J]. Proceedings of the IEEE, 1997, 85(1): 6-23.
    Julier S J and Uhlmann J K. General Decentralized Data Fusion with Covariance Intersection. Handbook of Multisensor Data Fusion: Theory and Practice[M]. Second Edition, New York: CRC Press, 2008: 319-342.
    Hajiyev C G and Soken H E. Robust adaptive Kalman filter for estimation of UAV dynamics in the presence of sensor/ actuator faults[J]. AerospaceScience and Technology, 2013, 28(1): 376-383.
    Le M S, Shin H S, Markham K, et al..?Cooperative allocation and guidance for air defence application[J]. Control Engineering Practice, 2014, 32:?236-244.
    Feng J X, Wang Z D, and Zeng M. Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises[J]. Information Fusion, 2013, 14(1): 78-86.
    Li X R, Zhu Y M, and Han C Z. Optimal linear estimation fusion-Part I: Unified fusion rules[C]. IEEE Transations on Information Theory, 2003, 49(9): 2192-2208.
    Julier S J and Uhlmann J K. Non-divergent estimation algorithm in the presence of unknown correlations[C]. Proceedings of the IEEE American Control Conference, Albuquerque, 1997: 2369-2373.
    Uhlmann J K. Covariance consistency methods for fault-tolerant distributed data fusion[J]. Information Fusion, 2003, 4(3): 201-215.
    Julier S J and Uhlmann J K. Using covariance intersection for SLAM[J]. Robotics and Autonomous Systems, 2007, 55(1): 3-20.
    Sijs J and Lazar M. State fusion with unknown correlation: Ellipsoidal intersection[J]. Automatica, 2012, 48: 1874-1878.
    Lazarus S B, Tsourdos A, Zbikowski R, et al.. Robust localisation using data fusion via integration of covariance intersection and interval analysis[C]. International Conference on Control, Automation and Systems COEX, Seoul, Korea, 2007: 199-206.
    Ferreira J and Waldmann J. Covariance intersection-based sensor fusion for sounding rocket tracking and impact area prediction[J]. Control Engineering Practice, 2007, 15(4): 389-409.
    Qi W J, Zhang P, and Deng Z L. Robust sequential covariance intersection fusion kalman filtering over multi-agent sensor networks with measurement delays and uncertain noise variances[J]. Acta Automatica Sinica, 2014, 40(11): 2632-2642.
    Gao Q, Chen S Y, Leung H R, et al.. Covariance intersection based image fusion technique with application to pansharpening in remote sensing[J]. Information Sciences, 2010, 180(18): 3434-3443.
    Deng Z L, Zhang P, Qi W J, et al.. Sequential covariance intersection fusion Kalman filter[J]. Information Sciences, 2012, 189: 293309.
    Sriyananda H. A simple method for the control of divergence in Kalman filter algorithms[J]. International Journal of Control, 1972, 16(6): 1101-1106.
    Lewis F L, Xie L H, and Popa D. Optimal and Robust Estimation[M]. Second Edition, New York: CRC Press, 2007: 315-340.
    Qu X M and Zhou J. The optimal robust finite-horizon Kalman filtering for multiple sensors with different stochastic failure rates[J]. Applied Mathematics Letters, 2013, 26(1): 80-86.
    Deng Z L, Zhang P, Qi W J, et al.. The accuracy comparison of multisensor covariance intersection fuser and three weighting fusers[J]. Information Fusion, 2013, 14(2): 177-185.
    Qi W J, Zhang P, and Deng Z L. Robust weighted fusion Kalman filters for multisensor time-varying systems with uncertain noise variances[J]. Signal Processing, 2014(99): 185-200.
    Qi W J, Zhang P, Nie G H, et al.. Robust weighted fusion Kalman predictors with uncertain noise variances[J]. Digital Signal Processing, 2014(30): 37-54.
    Qi W J, Zhang P, and Deng Z L. Robust weighted fusion time-varying Kalman smoothers for multisensory system with uncertain noise variances[J]. Information Sciences, 2014 (282): 15-37.
    Qu X M. A mini-max fusion strategy in distributedmulti- sensor system[C]. International Conference on System Science and Engineering, Xiamen, China, 2012: 330-333.
    Kailath T, Sayed A H, and Hassibi B. Linear Estimation[M]. New York: Prentice Hall, 2000, 766-772.
  • 加载中
计量
  • 文章访问数:  1360
  • HTML全文浏览量:  96
  • PDF下载量:  630
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-27
  • 修回日期:  2015-03-27
  • 刊出日期:  2015-08-19

目录

    /

    返回文章
    返回