高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合相位一致性与二维主成分分析的视觉显著性预测

徐威 唐振民

徐威, 唐振民. 融合相位一致性与二维主成分分析的视觉显著性预测[J]. 电子与信息学报, 2015, 37(9): 2089-2096. doi: 10.11999/JEIT141478
引用本文: 徐威, 唐振民. 融合相位一致性与二维主成分分析的视觉显著性预测[J]. 电子与信息学报, 2015, 37(9): 2089-2096. doi: 10.11999/JEIT141478
Xu Wei, Tang Zhen-min. Integrating Phase Congruency and Two-dimensional Principal Component Analysis for Visual Saliency Prediction[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2089-2096. doi: 10.11999/JEIT141478
Citation: Xu Wei, Tang Zhen-min. Integrating Phase Congruency and Two-dimensional Principal Component Analysis for Visual Saliency Prediction[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2089-2096. doi: 10.11999/JEIT141478

融合相位一致性与二维主成分分析的视觉显著性预测

doi: 10.11999/JEIT141478
基金项目: 

国家自然科学基金(61473154)

Integrating Phase Congruency and Two-dimensional Principal Component Analysis for Visual Saliency Prediction

  • 摘要: 为了更加有效地预测图像中吸引视觉注意的关键区域,该文提出一种融合相位一致性与2维主成分分析(2DPCA)的显著性方法。该方法不同于传统的利用相位谱的方式,而是提出采用相位一致性(PC)获取图像中重要的特征点和边缘信息,经快速漂移超像素优化后,融合局部和全局颜色对比度,生成低层特征显著图。接着提出利用2DPCA提取图像块的主成分后,计算主成分空间中图像块的局部和全局可区分性,得到模式显著图。最后,通过空间离散度度量分配合适的权重,使两者融合,提取显著性区域。在两种人眼跟踪数据库上与5种经典算法的实验对比结果表明,该算法能更加准确地预测人眼视觉关注点。
  • Li W T, Chang H S, Lien K C, et al.. Exploring visual and motion saliency for automatic video object extraction[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2600-2610.
    Chen D Y and Luo Y S. Preserving motion-tolerant contextual visual saliency for video resizing[J]. IEEE Transactions on Multimedia, 2013, 15(7): 1616-1627.
    Borji A, Sihite D N, and Itti L. Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study[J]. IEEE Transactions on Image Processing, 2013, 22(1): 55-69.
    Itti L, Koch C, and Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
    Harel J, Koch C, and Perona P. Graph-based visual saliency [C]. Proceedings of the Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 545-552.
    Bruce N D and Tsotsos J K. Saliency based on information maximization[C]. Proceedings of the Annual Conference on Neural Information Processing Systems, Whistler, Canada, 2006: 155-162.
    Borji A and Itti L. Exploiting local and global rarities for saliency detection[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012: 478-485.
    Judd T, Ehinger K, and Durand F. Learning to predict where humans look[C]. Proceedings of the IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 2106-2113.
    Vig E, Dorr M, and David C. Large-scale optimization of hierarchical features for saliency prediction in natural images [C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2798-2805.
    Hou X and Zhang L. Saliency detection: a spectral residual approach[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1-8.
    Li J, Levine M D, An X J, et al.. Visual saliency based on scale-space analysis in the frequency domain[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 996-1010.
    Yang J, Zhang D, Frangi A F, et al.. Two-dimensional PCA: a new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 131-137.
    Jiang H Z, Wu Y, and Yuan Z J. Probabilistic salient object contour detection based on superpixels[C]. Proceedings of the IEEE International Conference on Image Processing, Melbourne, Australia, 2013: 3069-3072.
    Kovesi P. Phase congruency detects corners and edges[C]. Proceedings of the Australian Pattern Recognition Society Conference, Sydney, Australia, 2003: 309-318.
    Vedaldi A and Soatto S. Quick shift and kernel methods for mode seeking[C]. Proceedings of the European Conference on Computer Vision, Marseille, France, 2008: 705-718.
    Wei Y C, Wen F, and Zhu W J. Geodesic saliency using background priors[C]. Proceedings of the European Conference on Computer Vision, Florence, Italy, 2012: 29-42.
    Cheng M M, Warrell J, Lin W Y, et al.. Efficient salient region detection with soft image abstraction[C]. Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 1529-1536.
    Shi T L, Liang M, and Hu X L. A reverse hierarchy model for predicting eye fixations[C]. Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 23-28.
  • 加载中
计量
  • 文章访问数:  1376
  • HTML全文浏览量:  112
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-24
  • 修回日期:  2015-03-11
  • 刊出日期:  2015-09-19

目录

    /

    返回文章
    返回