高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合局部能量与改进的符号距离正则项的图像目标分割算法

韩明 刘教民 孟军英 震洲 王敬涛

韩明, 刘教民, 孟军英, 震洲, 王敬涛. 结合局部能量与改进的符号距离正则项的图像目标分割算法[J]. 电子与信息学报, 2015, 37(9): 2047-2054. doi: 10.11999/JEIT141473
引用本文: 韩明, 刘教民, 孟军英, 震洲, 王敬涛. 结合局部能量与改进的符号距离正则项的图像目标分割算法[J]. 电子与信息学报, 2015, 37(9): 2047-2054. doi: 10.11999/JEIT141473
Han Ming, Liu Jiao-min, Meng Jun-ying, Wang Zhen-zhou, Wang Jing-tao. Local Energy Information Combined with Improved Signed Distance Regularization Term for Image Target Segmentation Algorithm[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2047-2054. doi: 10.11999/JEIT141473
Citation: Han Ming, Liu Jiao-min, Meng Jun-ying, Wang Zhen-zhou, Wang Jing-tao. Local Energy Information Combined with Improved Signed Distance Regularization Term for Image Target Segmentation Algorithm[J]. Journal of Electronics & Information Technology, 2015, 37(9): 2047-2054. doi: 10.11999/JEIT141473

结合局部能量与改进的符号距离正则项的图像目标分割算法

doi: 10.11999/JEIT141473
基金项目: 

河北省自然科学基金(F2012208004),河北省教育厅高等学校科学研究计划自然科学重点项目(ZD20132013)和河北省科技支撑计划项目(14210302D)

Local Energy Information Combined with Improved Signed Distance Regularization Term for Image Target Segmentation Algorithm

  • 摘要: 针对传统C-V模型对颜色不均匀图像分割失败并且对初始轮廓和位置敏感问题,以及现有符号距离正则项存在周期性振荡和局部极值问题。该文提出结合局部能量信息和改进的符号距离正则项的图像目标分割算法。首先,将全局图像信息扩展到HSV空间,并使用局部能量项信息分析每个像素及其领域内的统计特性,从而在较少的迭代次数内有效分割颜色分布不均匀图像。其次,改进现有符号距离正则项,改进后的符号距离正则项在避免水平集函数的重新初始化的同时,提高了计算效率,保证了水平集函数演化过程的稳定性。然后,定义阈值判断法的水平集函数演化的终止准则,使曲线准确演化到目标轮廓。该算法与同类模型的对比实验表明该模型具有较高的分割精度和对初始轮廓的鲁棒性。
  • Shi Y and Karl W C. Real-time tracking using level sets[C]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 34-41.
    Kiran Thapaliyaa, Jae-Young Pyuna, Chun-Su Parkb, et al.. Level set method with automatic selective local statistics for brain tumor segmentation in MR images[J]. Computerized Medical Imaging and Graphics, 2013, 37(1): 522-537.
    Jiang Xin, Zhang Ren-jie, and Nie Sheng-dong. Image segmentation based on level set method[J]. Physics Procedia, 2012, 33(6): 840-845.
    Vese L and Chan T. A multiphase level set frame work for image segmentation using the mumford and shah model[J]. Journal of Computer Vision, 2002, 50(3): 271-293.
    Wang Hui and Huang Ting-zhu. An adaptive weighting parameter estimation between local and global intensity fitting energy for image segmentation[J]. Communication Nonlinear Science Numeral Simulation, 2014, 19(2): 3098-3105.
    戚世乐, 王美清. 结合全局和局部信息的两阶段活动轮廓模型[J]. 中国图象图形学报, 2014, 19(3): 421-427.
    Qi Shi-le and Wang Mei-qing. Two-stage active contour model driven by local and global information[J]. Journal of Image and Graphics, 2014, 19(3): 421-427.
    Li Chun-ming, Kao Chiu-Yen, Gore J C, et al.. Minimization of region-scalable fitting energy for image segmentation[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1940-1949.
    Mumford D and Shah J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42(5): 577-585.
    Zhao Min-rong, Zhang Xi-wen, and Jiang Juan-na. Topography image segmentation based on improved Chan-Vese model[J]. Computer Aided Drafting, Design and Manufacturing, 2013, 23(2): 13-17.
    葛琦, 韦志辉, 肖亮, 等. 基于局部特征的自适应快速图像分割模型[J]. 计算机研究与发展, 2013, 50(4): 815-822.
    Ge Qi, Wei Zhi-hui, Xiao Liang, et al.. Adaptive fast image segmentation model based on local feature[J]. Journal of Computer Research and Development, 2013, 50(4): 815-822.
    刘存良, 潘振宽, 郑永果, 等. 两种保持符号距离函数的水平集分割方法[J].吉林大学学报(工学版), 2013, 43(增刊): 115-120.
    Liu Cun-liang, Pan Zhen-kuan, Zheng Yong-guo, et al.. Two algorithms for level set method preserving signed distance functions[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(suppl.): 115-120.
    Ahmed D, Kamal H, and Moussa D. Fast multilevel thresholding for image segmentation through a multiphase level set method[J]. Signal Processing, 2013, 93(7): 139-153.
    王青平, 赵宏宇, 吴微微, 等. 融合局部和非局部信息的自适应贝叶斯分割方法[J].电子与信息学报, 2014, 36(4): 1003-1007.
    Wang Qing-ping, Zhao Hong-yu, Wu Wei-wei, et al.. An adaptive Bayesian segmentation method fused of local and non-local information[J]. Journal of Electronics Information Technology, 2014, 36(4): 1003-1007.
    Wang L, Li C M, Sun Q S, et al.. Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J]. Computerized Medical Imaging and Graphics, 2009, 33(7): 520-531.
    Annupan R and Stanislav S M. Multi-feature gradient vector ow snakes for adaptive segmentation of the ultrasound images of breast cancer[J]. Journal of Visual Communication and Image Representation, 2013, 24(4): 1414-1430.
  • 加载中
计量
  • 文章访问数:  1379
  • HTML全文浏览量:  125
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-24
  • 修回日期:  2015-03-23
  • 刊出日期:  2015-09-19

目录

    /

    返回文章
    返回