高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图正则化与非负组稀疏的自动图像标注

钱智明 钟平 王润生

钱智明, 钟平, 王润生. 基于图正则化与非负组稀疏的自动图像标注[J]. 电子与信息学报, 2015, 37(4): 784-790. doi: 10.11999/JEIT141282
引用本文: 钱智明, 钟平, 王润生. 基于图正则化与非负组稀疏的自动图像标注[J]. 电子与信息学报, 2015, 37(4): 784-790. doi: 10.11999/JEIT141282
Qian Zhi-Ming, Zhong Ping, Wang Run-Sheng. Automatic Image Annotation via Graph Regularization and Non-negative Group Sparsity[J]. Journal of Electronics & Information Technology, 2015, 37(4): 784-790. doi: 10.11999/JEIT141282
Citation: Qian Zhi-Ming, Zhong Ping, Wang Run-Sheng. Automatic Image Annotation via Graph Regularization and Non-negative Group Sparsity[J]. Journal of Electronics & Information Technology, 2015, 37(4): 784-790. doi: 10.11999/JEIT141282

基于图正则化与非负组稀疏的自动图像标注

doi: 10.11999/JEIT141282
基金项目: 

国家自然科学基金(61271439)资助课题

Automatic Image Annotation via Graph Regularization and Non-negative Group Sparsity

  • 摘要: 设计一个稳健的自动图像标注系统的重要环节是提取能够有效描述图像语义的视觉特征。由于颜色、纹理和形状等异构视觉特征在表示特定图像语义时所起作用的重要程度不同且同一类特征之间具有一定的相关性,该文提出了一种图正则化约束下的非负组稀疏(Graph Regularized Non-negative Group Sparsity, GRNGS)模型来实现图像标注,并通过一种非负矩阵分解方法来计算其模型参数。该模型结合了图正则化与l2,1-范数约束,使得标注过程中所选的组群特征能体现一定的视觉相似性和语义相关性。在Corel5K和ESP Game等图像数据集上的实验结果表明:相较于一些最新的图像标注模型,GRNGS模型的鲁棒性更强,标注结果更精确。
  • 期刊类型引用(4)

    1. 李松涛,李维刚,甘平,蒋林. 基于Sinkhorn距离特征缩放的多约束非负矩阵分解算法. 电子与信息学报. 2022(12): 4384-4394 . 本站查看
    2. 于琨,孙波,海本斋. 基于超图排序和组稀疏最优化的推荐系统. 计算机工程与设计. 2018(07): 1996-2001 . 百度学术
    3. 李冰锋,唐延东,韩志. 基于超图直推非负矩阵分解的图像标注法研究. 计算机仿真. 2017(02): 380-384+440 . 百度学术
    4. 王瑞霞,彭国华. n-words模型下Hesse稀疏表示的图像检索算法. 电子与信息学报. 2016(05): 1115-1122 . 本站查看

    其他类型引用(1)

  • 加载中
计量
  • 文章访问数:  2336
  • HTML全文浏览量:  101
  • PDF下载量:  1032
  • 被引次数: 5
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2014-12-30
  • 刊出日期:  2015-04-19

目录

    /

    返回文章
    返回