高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法

吴卫华 江晶 冯讯 刘重阳

吴卫华, 江晶, 冯讯, 刘重阳. 基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法[J]. 电子与信息学报, 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232
引用本文: 吴卫华, 江晶, 冯讯, 刘重阳. 基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法[J]. 电子与信息学报, 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232
Wu Wei-hua, Jiang Jing, Feng Xun, Liu Chong-yang. Multi-target Tracking Algorithm Based on GaussianMixture Cardinalized Probability Hypothesis[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232
Citation: Wu Wei-hua, Jiang Jing, Feng Xun, Liu Chong-yang. Multi-target Tracking Algorithm Based on GaussianMixture Cardinalized Probability Hypothesis[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1490-1494. doi: 10.11999/JEIT141232

基于高斯混合势化概率假设密度的脉冲多普勒雷达多目标跟踪算法

doi: 10.11999/JEIT141232
基金项目: 

国家自然科学基金(61102168)资助课题

Multi-target Tracking Algorithm Based on GaussianMixture Cardinalized Probability Hypothesis

  • 摘要: 为在新兴的随机有限集(RFS)框架下充分利用多普勒信息跟踪杂波环境下的多目标,该文提出基于高斯混合势化概率假设密度(GM-CPHD)的脉冲多普勒雷达多目标跟踪(MTT)算法。该算法在标准GM-CPHD基础上,在使用位置量测更新状态后,再利用多普勒量测进行序贯更新,可获得更精确的似然函数和状态估计。仿真结果验证了该算法的有效性,表明在GM-CPHD基础上引入目标的多普勒信息可有效抑制杂波,显著改善跟踪性能。
  • Mahler R. Statistical Multisource-multitarget Information Fusion[M]. Norwood: Artech House, 2007.
    Reuter S, Wilking B, Wiest J, et al.. Real-time multi-object tracking using random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2666-2678.
    Zhou G, Pelletier M, Kirubarajan T, et al.. Statically fused converted position and Doppler measurement Kalman filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 300-318.
    Ulmke M, Erdinc O, and Willett P. GMTI tracking via the Gaussian mixture cardinalized probability hypothesis density filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1821-1833.
    Yoon J H, Kim D Y, Bae S H, et al.. Joint initialization and tracking of multiple moving objects using Doppler information[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3447-3452.
    Vo B-N and Ma W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104.
    Vo B T, Vo B N, and Antonio C. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553-3567.
    Ouyang C, Ji H, and Tian Y. Improved Gaussian mixture CPHD tracker for multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1177-1191. [9] 欧阳成, 姬红兵, 张俊根. 一种改进的CPHD多目标跟踪算法[J]. 电子与信息学报, 2010, 32(9): 2112-2118.
    Ouyang C, Ji H, and Zhang J. Improved CPHD filter for multitarget tracking[J]. Journal of Electronics Information Technology, 2010, 32(9): 2112-2118.
    Beard M, Vo B T, Vo B N, et al.. A partially uniform target birth model for Gaussian mixture PHD/CPHD filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2835-2844.
    Ristic B, Clark D, Vo B N, et al.. Adaptive target birth intensity for PHD and CPHD filters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1656-1668.
    Beard M, Vo B-T, and Vo B-N. Multitarget filtering with unknown clutter density using a bootstrap GMCPHD filter[J]. IEEE Signal Processing Letters, 2013, 20(4): 323-326.
    Ristic B, Clark D, and Gordon N. Calibration of multi-target tracking algorithms using non-cooperative targets[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 390-398.
    Battistelli G, Chisci L, Fantacci C, et al.. Consensus CPHD filter for distributed multitarget tracking[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 508-520.
    Uney M, Clark D, and Julier S. Distributed fusion of PHD filters via exponential mixture densities[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 521-531.
    Ristic B, Vo B-N, Clark D, et al.. A metric for performance evaluation of multi-target tracking algorithms[J]. IEEE Transactions on Signal Processing, 2011, 59(7): 3452-3457.
  • 期刊类型引用(6)

    1. 黄鹤,郭璐,许哲,王会峰,孟芸,代亮. 集群无人机定位信号的自适应GM-CBMeMBer滤波算法. 中国惯性技术学报. 2019(04): 492-498 . 百度学术
    2. 杨丹,姬红兵,张永权. 未知杂波条件下样本集校正的势估计概率假设密度滤波算法. 电子与信息学报. 2018(04): 912-919 . 本站查看
    3. 姜学军,孙敬怡. 无线传感网络数据集离群目标跟踪方法仿真. 计算机仿真. 2018(01): 265-268 . 百度学术
    4. 彭华甫,黄高明,田威,邱昊. 幅度及多普勒信息辅助的多目标跟踪算法. 航空学报. 2018(10): 234-241 . 百度学术
    5. 魏立兴,孙合敏,吴卫华,黄志良. 改进的GM-CBMeMBer机载多普勒雷达多目标跟踪算法. 空军预警学院学报. 2017(03): 162-166+178 . 百度学术
    6. 李文娟,顾红,苏卫民. 基于多伯努利概率假设密度的扩展目标跟踪方法. 电子与信息学报. 2016(12): 3114-3121 . 本站查看

    其他类型引用(2)

  • 加载中
计量
  • 文章访问数:  1561
  • HTML全文浏览量:  133
  • PDF下载量:  418
  • 被引次数: 8
出版历程
  • 收稿日期:  2014-09-23
  • 修回日期:  2014-12-15
  • 刊出日期:  2015-06-19

目录

    /

    返回文章
    返回