高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用稳健字典学习的雷达高分辨距离像目标识别算法

冯博 陈渤 王鹏辉 刘宏伟 严俊坤

冯博, 陈渤, 王鹏辉, 刘宏伟, 严俊坤. 利用稳健字典学习的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227
引用本文: 冯博, 陈渤, 王鹏辉, 刘宏伟, 严俊坤. 利用稳健字典学习的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227
Feng Bo, Chen Bo, Wang Peng-hui, Liu Hong-wei, Yan Jun-kun. Radar High Resolution Range Profile Target Recognition Algorithm via Stable Dictionary Learning[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227
Citation: Feng Bo, Chen Bo, Wang Peng-hui, Liu Hong-wei, Yan Jun-kun. Radar High Resolution Range Profile Target Recognition Algorithm via Stable Dictionary Learning[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1457-1462. doi: 10.11999/JEIT141227

利用稳健字典学习的雷达高分辨距离像目标识别算法

doi: 10.11999/JEIT141227
基金项目: 

国家自然科学基金(61372132, 61201292),新世纪优秀人才支持计划(NCET-13-0945),重点实验室基金和中央高校基本科研业务费专项资金资助课题

Radar High Resolution Range Profile Target Recognition Algorithm via Stable Dictionary Learning

  • 摘要: 基于字典学习算法的信号稀疏表示被广泛应用于信号处理领域。由于字典原子间存在冗余性,求解信号的稀疏表示会受到观测信号中扰动分量的影响,从而带来表示的不确定性,不利于雷达高分辨距离像(HRRP)目标识别任务。针对这一问题,该文提出一种稳健字典学习(SDL)算法,通过边缘化信号丢失,构建稳健损失函数用于学习自适应字典。该算法利用距离像在散射点不发生越距离单元走动的方位帧内具有结构相似性,约束临近训练样本间稀疏表示的非零元素位置相同,并通过结构化稀疏约束选择最优子字典用于测试样本的分类。基于实测HRRP数据的实验结果验证了所提算法的有效性。
  • Chen B, Liu H W, Chai J, et al.. Large margin feature weighting method via linear programming[J]. IEEE Transactions on Knowledge Data Engineering, 2009, 21(10): 1475-1488.
    潘勉, 王鹏辉, 杜兰, 等. 基于TSB-HMM模型的雷达高分辨距离像目标识别算法[J]. 电子与信息学报, 2013, 35(7): 1547-1554.
    Pan Mian, Wang Peng-hui, Du Lan, et al.. Radar HRRP target recognition based on truncated stick-breaking hidden Markov model[J]. Journal of Electronics Information Technology, 2013, 35(7): 1547-1554.
    Chai J, Liu H W, and Bao Z. Combinatorial discriminant analysis: supervised feature extraction that integrates global and local criteria[J]. Electronics Letters, 2009, 45(18): 934-935.
    Du L, Liu H W, Bao Z, et al.. Radar HRRP target recognition based on higher-order spectra[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2359-2368.
    Du L, Liu H W, Bao Z, et al.. Radar automatic target recognition using complex high-resolution range profiles[J]. IET Radar, Sonar, Navigation, 2007, 1(1): 18-26.
    Du L, Liu H W, Wang P H, et al.. Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3546-3559.
    冯博, 杜兰, 张学峰, 等. 基于字典学习的雷达高分辨距离像目标识别[J]. 电波科学学报, 2012, 27(5): 897-905.
    Feng Bo, Du Lan, Zhang Xue-feng, et al.. Radar HRRP target recognition based on dictionary learning[J]. Chinese Journal of Radio Science, 2012, 27(5): 897-905.
    To?ic? I and Frossard P. Dictionary learning[J]. IEEE Signal Processing Magazine, 2011, 28(2): 2738.
    Donoho D L, Elad M, and Temlyakov V. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
    Aharon M, Elad M, and Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
    Wang H, Nie F P, and Huang H. Robust and discriminative self-taught learning[C]. International Conference on Machine Learning (ICML-13), Atlanta, Georgia, USA, 2013: 298-306.
    Bengio Y. Neural Networks: Tricks of the Trade[M]. Berlin Heidelberg: Springer, 2012: 437-478.
    Wan L, Zeiler M, Zhang S X, et al.. Regularization of neural networks using DropConnect[J]. JMLR WCP, 2013, 28(3): 1058-1066.
    Srivastava N. Improving neural networks with dropout[D]. [Ph.D. dissertation], University of Toronto, 2013.
  • 加载中
计量
  • 文章访问数:  1493
  • HTML全文浏览量:  151
  • PDF下载量:  520
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-19
  • 修回日期:  2014-12-10
  • 刊出日期:  2015-06-19

目录

    /

    返回文章
    返回