高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于稠密SIFT特征对齐的稀疏表达人脸识别算法

周全 魏昕 陈建新 郑宝玉

周全, 魏昕, 陈建新, 郑宝玉. 一种基于稠密SIFT特征对齐的稀疏表达人脸识别算法[J]. 电子与信息学报, 2015, 37(8): 1913-1919. doi: 10.11999/JEIT141194
引用本文: 周全, 魏昕, 陈建新, 郑宝玉. 一种基于稠密SIFT特征对齐的稀疏表达人脸识别算法[J]. 电子与信息学报, 2015, 37(8): 1913-1919. doi: 10.11999/JEIT141194
Zhou Quan, Wei Xin, Chen Jian-xin, Zheng Bao-yu. Improved Sparse Representation Algorithm for Face Recognition Via Dense SIFT Feature Alignment[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1913-1919. doi: 10.11999/JEIT141194
Citation: Zhou Quan, Wei Xin, Chen Jian-xin, Zheng Bao-yu. Improved Sparse Representation Algorithm for Face Recognition Via Dense SIFT Feature Alignment[J]. Journal of Electronics & Information Technology, 2015, 37(8): 1913-1919. doi: 10.11999/JEIT141194

一种基于稠密SIFT特征对齐的稀疏表达人脸识别算法

doi: 10.11999/JEIT141194
基金项目: 

国家自然科学基金(61201165, 61271240, 61401228, 61403350)和南京邮电大学科研基金(NY213067)资助课题

Improved Sparse Representation Algorithm for Face Recognition Via Dense SIFT Feature Alignment

  • 摘要: 该文针对人脸图像受到非刚性变化的影响,如旋转、姿态以及表情变化等,提出一种基于稠密尺度不变特征转换(SIFT)特征对齐(Dense SIFT Feature Alignment, DSFA)的稀疏表达人脸识别算法。整个算法包含两个步骤:首先利用DSFA方法对齐训练和测试样本;然后设计一种改进的稀疏表达模型进行人脸识别。为加快DSFA步骤的执行速度,还设计了一种由粗到精的层次化对齐机制。实验结果表明:在ORL,AR和LFW 3个典型数据集上,该文方法都获得了最高的识别精度。该文方法比传统稀疏表达方法在识别精度上平均提高了4.3%,同时提高了大约6倍的识别效率。
  • Li S Z and Jain A K. Handbook of face recognition[M]. New York, Springer, 2011: 1-374.
    Yang A Y, Zihan Z, Ganesh B A, et al.. Fast-minimization algorithms for robust face recognition[J]. IEEE Transactions on Image Processing, 2013, 22(8): 3234-3236.
    Cament A L, Castillo L E, Perez J P, et al.. Fusion of local normalization and Gabor entropy weighted features for face identification[J]. Pattern Recognition, 2014, 47(2): 568-577.
    Jonathon P P and Alice O J. Comparison of human and computer performance across face recognition experiments[J]. Image and Vision Computing, 2014, 32(1): 74-85.
    Radtke V W P, Granger E, Sabourin R, et al.. Skew-sensitive boolean combination for adaptive ensembles-An application to face recognition in video surveillance[J]. Information Fusion, 2014, 20(10): 31-48.
    Abdullah M F A, Sayeed S M, Sonai K M, et al.. Face recognition with symmetric local graph Structure[J]. Expert Systems with Applications, 2014, 41(14): 6131-6137.
    殷飞, 焦李成, 杨淑媛. 基于子空间类标传播和正则判别分析的单标记图像人脸识别[J]. 电子与信息学报, 2014, 36(3): 610-616.
    Yin Fei, Jiao Li-cheng, and Yang Shu-yuan. Subspace label propagation and regularized discriminate analysis based single labeled image person face recognition[J]. Jounal of Electronics Information Technology, 2014, 36(3): 610-616.
    赵振华 郝晓弘. 局部保持鉴别投影及其在人脸识别中的应用[J]. 电子与信息学报, 2013, 35(2): 463-467.
    Zhao Zhen-hua and Hao Xiao-hong. Linear locality preserving and discriminating projection for face recognition [J]. Jounal of Electronics Information Technology, 2013, 35(2): 463-467.
    Ahonen T, Hadid A, and Pietikainen M. Face description with local binary patterns: Application to face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041
    张洁玉, 赵鸿萍, 陈曙. 自适应阈值及加权局部二值模式的人脸识别[J]. 电子与信息学报, 2014, 36(6): 1327-1333.
    Zhang Jie-yu, Zhao Hong-ping, and Chen Shu. Face recognition based on weighted local binary pattern with adaptive threshold[J]. Jounal of Electronics Information Technology, 2014, 36(6): 1327-1333.
    Cootes T F, Edwards G J, and Taylor C J. Active appearance models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685.
    Belhumeur P N, Hespanha J P, and Kriegman D J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
    Naseem I, Togneri R, and Bennamoun M. Linear regression for face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(11): 2106-2112
    Turk M and Pentland A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 2010, 3(1): 71-86.
    Bartlett M S, Movellan J R, and Sejnowski T J. Face recognition by independent component analysis[J]. IEEE Transactions on Neuro Network, 2002, 13(6): 1450-1464.
    Wright J, Yang A Y, Ganesh A, et al.. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227
    Peng Y, Ganesh A, Wright J, et al.. Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 22330-2246.
    Wagner A, Wright J, Ganesh A, et al.. Toward a practical face recognition system: Robust alignment and illumination by sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 372-386.
    Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
    Shekhovtsov A, Kovtun I, and Hlavac V. Efficient MRF Deformation Model for Non-Rigid Image Matching[C]. Proceedings of the IEEE Computer Vision and Pattern Recognition, Miami, FL, USA, 2007: 1-6.
    Felzenszwalb P F and Huttenlocher D P. Efficient belief propagation for early vision[J]. International Journal of Computer Vision, 2006, 70(1): 41-54.
    Boyd S and Vandenberghe L. Convex Optimization[M]. London, Cambridge University Press, 2004: 457-514.
    Martinez A M. The AR face database[R]. CVC Tech. Rep. 1998.
    Huang G B, Ramesh M, Berg T, et al.. Labeled faces in the wild: A database for studying face recognition in unconstrained environments[R]. University of Massachusetts, Amherst Tech. Rep. 7-49, 2007.
    Viola P and Jones M J. Robust Real-Time Face Detection[J]. International Journal of Computer Vision, 2004, 57(3): 137-154.
  • 加载中
计量
  • 文章访问数:  1685
  • HTML全文浏览量:  123
  • PDF下载量:  1163
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-12
  • 修回日期:  2015-04-24
  • 刊出日期:  2015-08-19

目录

    /

    返回文章
    返回