高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Fisher线性判别分析的语音信号端点检测方法

王明合 张二华 唐振民 许昊

王明合, 张二华, 唐振民, 许昊. 基于Fisher线性判别分析的语音信号端点检测方法[J]. 电子与信息学报, 2015, 37(6): 1343-1349. doi: 10.11999/JEIT141122
引用本文: 王明合, 张二华, 唐振民, 许昊. 基于Fisher线性判别分析的语音信号端点检测方法[J]. 电子与信息学报, 2015, 37(6): 1343-1349. doi: 10.11999/JEIT141122
Wang Ming-he, Zhang Er-hua, Tang Zhen-min, Xu Hao. Voice Activity Detection Based on Fisher Linear Discriminant Analysis[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1343-1349. doi: 10.11999/JEIT141122
Citation: Wang Ming-he, Zhang Er-hua, Tang Zhen-min, Xu Hao. Voice Activity Detection Based on Fisher Linear Discriminant Analysis[J]. Journal of Electronics & Information Technology, 2015, 37(6): 1343-1349. doi: 10.11999/JEIT141122

基于Fisher线性判别分析的语音信号端点检测方法

doi: 10.11999/JEIT141122

Voice Activity Detection Based on Fisher Linear Discriminant Analysis

  • 摘要: 传统的语音端点检测方法对辅音,特别是受到噪声污染的清音部分与背景噪声之间分离能力不足。针对上述问题,该文提出一种基于Fisher线性判别分析的梅尔频率倒谱系数(F-MFCC)端点检测方法。将清音信号和背景噪声视为两类分类问题,采用Fisher准则求解具有判别信息的最佳投影方向,使得投影后的特征参数具有最小类内散度和最大类间散度,从而增大清音与背景噪声的可分离性。在不同语音库上的实验结果表明,F-MFCC能够在不同信噪比和背景噪声条件下提高语音端点检测的准确率。
  • Junqua J C. Robustness and cooperative multi-model man-machine communication applications[C]. The Structure of Multimodal Dialogue, Maratea, Italy, 1991: 101-112.
    ETSI. Universal Mobile Telecommunication Systems (UMTS); Mandatory Speech Codec speech processing functions, AMR speech codec; Voice Activity Detector VAD[S]. ETSI TS 126 094 v11.0.0(2012-10): 1-26.
    Wan Yu-long, Wang Xian-liang, Zhou Ruo-hua, et al.. Enhanced voice activity detection based on automatic segmentation and event classification[J]. Journal of Computational Information Systems, 2014, 10(10): 4169-4177.
    宫朝辉, 刁麓弘. 改进共振峰提取的语音端点检测[J]. 计算机辅助设计与图形学学报, 2013, 25(8): 1230-1236.
    Gong Zhao-hui and Diao Lu-hong. Improved speech endpoint detection based on formant[J]. Journal of Computer Aided Design Computer Graphics, 2013, 25(8): 1230-1236.
    李晔, 张仁志, 崔慧娟, 等. 低信噪比下基于谱熵的语音端点检测算法[J]. 清华大学学报(自然科学版), 2005, 45(10): 1397-1440.
    Li Ye, Zhang Ren-zhi, Cui Hui-juan, et al.. Voice activity detection algorithm with low signal-to-noise ratios based on the spectrum entropy[J]. Journal of Tsinghua University (Science and Technology), 2005, 45(10): 1397-1440.
    Chen Shi-huang and Wang Jhing-fa. A wavelet-based voice activity detection algorithm in noisy environments[C]. Proceedings of the 9th IEEE International Conference on Electmnics, Circuits and Systems, Dubrovnik, Croatia, 2002: 995-998.
    Ghosh P K, Tsiartas A, and Narayanan S. Robust voice activity detection using long-term signal variability[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(3): 600-613.
    王宏志, 徐玉超, 李美静. 基于Mel频率倒谱参数相似度的语音端点检测算法[J]. 吉林大学学报(工学版), 2012, 42(5): 1331-1335.
    Wang Hong-zhi, Xu Yu-chao, and Li Mei-jing. Voice activity detection algorithm based on Mel-frequency cepstrum coefficient (MFCC) similarity[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(5): 1331-1335.
    Oh Sang-yeob and Chung Kyung-yong. Improvement of speech detection using ERB feature extraction[J]. Wireless Personal Communications, 2014, 79(4): 2439-2451.
    卢志茂, 金辉, 张春祥, 等. 基于HHT和OSF的复杂环境语音端点检测[J]. 电子与信息学报, 2012, 34(1): 213-217.
    Lu Zhi-mao, Jin Hui, Zhang Chun-xiang, et al.. Voice activity detection in complex environment based on Hilbert-Huang transform and order statistics filter[J]. Journal of Electronics Information Technology, 2012, 34(1): 213-217.
    Deng Shi-wen and Han Ji-qing. Statistical voice activity detection based on sparse representation over learned dictionary[J]. Digital Signal Processing, 2013, 23(4): 1228-1232.
    Zhang Yan, Tang Zhen-min, Li Yan-ping, et al.. A hierarchical framework approach for voice activity detection and speech enhancement[J]. The Scientific World Journal, 2014, Vol. 2014: Article ID 723643, 8 pages.
    Choi Jae-hun and Chang Joon-hyuk. Dual-microphone voice activity detection technique based on two-step power level difference ratio[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2014, 22(6): 1069-1081.
    Ryant N, Liberman M, and Yuan Jia-hong. Speech activity detection on YouTube using deep neural networks[C]. Interspeech: 14th Annual Conference of the International Speech Communication Association, Lyon, France, 2013: 728-731.
    Fisher R A. The use of multiple measures in taxonomic problems[J]. Annals of Eugenics, 1936, 7(2): 179-188.
    Mak M W and Yu H B. A study of voice activity detection techniques for NIST speaker recognition evaluations[J]. Computer Speech Language, 2014, 28(1): 295-313.
  • 加载中
计量
  • 文章访问数:  1648
  • HTML全文浏览量:  160
  • PDF下载量:  860
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-29
  • 修回日期:  2014-12-19
  • 刊出日期:  2015-06-19

目录

    /

    返回文章
    返回